SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kazepidis Panagiotis) "

Sökning: WFRF:(Kazepidis Panagiotis)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Papadopoulos, A. I., et al. (författare)
  • Molecular engineering of sustainable phase-change solvents: From digital design to scaling-up for CO 2 capture
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 420:Part 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Phase-change solvents promise reduced energetic and environmental footprints for separation systems, including absorption-based CO2 abatement technologies. The search for efficient phase-change solvents is limited by challenges in vapour-liquid–liquid equilibrium (VLLE) prediction and in sustainability assessment. We overcome these with a digital approach to screen billions of structures and design the novel phase-change solvent S1N (N1-cyclohexylpropane-1,3-diamine) and mixture S1N/DMCA (N,N-dimethylcyclohexylamine). Screening criteria include thermodynamic and process-related properties, reactivity and sustainability of solvent production and use. VLLE phase envelopes are predicted using the SAFT-γ Mie (Statistical Associating Fluid Theory) equation of state thanks to its transferability to any structure and the implicit modelling of ionic species. Experimental validation confirms the suitability of S1N/DMCA for scaling-up, with a cyclic capacity of 1.19 mol CO2/ kg-solvent, a regeneration energy of 2.3 GJ/ton-CO2, and vapour losses and viscosity lower by 10% and 70% than those of other solvents. S1N is also safer for plant operation and working personnel.
  •  
2.
  • Shavalieva, Gulnara, 1987, et al. (författare)
  • Environmental, health and safety assessment of post-combustion CO2 capture processes with phase-change solvents
  • 2021
  • Ingår i: Sustainable Production and Consumption. - : Elsevier BV. - 2352-5509. ; 25, s. 60-76
  • Tidskriftsartikel (refereegranskat)abstract
    • A class of solvents for chemisorption-based CO2 capture, phase-change solvents, promises significant energy reductions due to liquid-liquid phase separation and partial solvent recycling before CO2 desorption. Although energy consumption is a critical aspect of the CO2 capture process sustainability, a holistic evaluation of health, safety, and environmental impacts is required to confirm the beneficial performance of processes employing phase-change solvents compared to conventional alternatives. This study outlines a method for combining the life cycle and environmental, health and safety hazard assessment. The method is applied for the first time on processes employing two different exemplary phase-change solvents, a reference aqueous solution of methylcyclohexylamine (MCA) and a novel mixture of cyclohexylpropane-1,3-diamine (S1N) and dimethylcyclohexylamine (DMCA). The results show that phase-change solvents have the potential to be a better alternative to conventional amine (i.e., MEA) solvent systems due to the reduced reboiler duty and lower impact on the environment. However, additional care might need to be taken to prevent the potential accumulation of the carcinogenic nitrosamines in the system.
  •  
3.
  • Shavalieva, Gulnara, 1987, et al. (författare)
  • Sustainability analysis of phase-change solvents for post-combustion CO2 capture
  • 2019
  • Ingår i: Chemical Engineering Transactions. - 2283-9216. ; 76, s. 1045-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Phase-change solvents is a solution to the energy penalty problem of post-combustion CO2 capture. While the improved thermodynamic performance of processes using phase-change solvents is previously demonstrated, there is no research done on the environmental and health aspects of such processes. The purpose of this study is to bridge this gap with the help of combined life cycle and safety, health and environment hazard assessment. In terms of life cycle analysis, steam for the reboiler, CO2 compression for transport and electricity consumption by the flue gas blower are the main contributors to the impact, however, in comparison with the conventional solvents, phase-change solvents will require additional electricity and reclaimer steam input due to phase-separation and potential increase of degradation compounds, the overall energy requirement is, however, smaller. The assessment indicated that phase-change solvent systems may experience additional problems of accumulation of harmful solvent degradation products due to the design of the process. The study highlights that in comparison with the conventional systems, phase-change solvent process might require additional safety equipment, but the overall environmental and health impact of the system is expected to be lower.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy