SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keeling Patrick J) "

Sökning: WFRF:(Keeling Patrick J)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Curtis, Bruce A., et al. (författare)
  • Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 492:7427, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host-and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
  •  
2.
  •  
3.
  • Onuţ-Brännström, Ioana, et al. (författare)
  • A Mitosome With Distinct Metabolism in the Uncultured Protist Parasite Paramikrocytos canceri (Rhizaria, Ascetosporea)
  • 2023
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron–sulfur cluster (ISC) pathway-mediated Fe–S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.
  •  
4.
  • Schön, Max Emil, et al. (författare)
  • Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we used single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
  •  
5.
  • Strassert, Jürgen F H, et al. (författare)
  • Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates
  • 2018
  • Ingår i: The ISME Journal. - : Macmillan Publishers Ltd.. - 1751-7362 .- 1751-7370. ; 12, s. 304-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.
  •  
6.
  • Boscaro, Vittorio, et al. (författare)
  • Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis
  • 2022
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 7:6, s. 810-819
  • Tidskriftsartikel (refereegranskat)abstract
    • Animals and microorganisms often establish close ecological relationships. However, much of our knowledge about animal microbiomes comes from two deeply studied groups: vertebrates and arthropods. To understand interactions on a broader scale of diversity, we characterized the bacterial microbiomes of close to 1,000 microscopic marine invertebrates from 21 phyla, spanning most of the remaining tree of metazoans. Samples were collected from five temperate and tropical locations covering three marine habitats (sediment, water column and intertidal macroalgae) and bacterial microbiomes were characterized using 16S ribosomal RNA gene sequencing. Our data show that, despite their size, these animals harbour bacterial communities that differ from those in the surrounding environment. Distantly related but coexisting invertebrates tend to share many of the same bacteria, suggesting that guilds of microorganisms preferentially associated with animals, but not tied to any specific host lineage, are the main drivers of the ecological relationship. Host identity is a minor factor shaping these microbiomes, which do not show the same correlation with host phylogeny, or ‘phylosymbiosis’, observed in many large animals. Hence, the current debate on the varying strength of phylosymbiosis within selected lineages should be reframed to account for the possibility that such a pattern might be the exception rather than the rule.
  •  
7.
  • Hehenberger, Elisabeth, et al. (författare)
  • Functional Relationship between a Dinoflagellate Host and Its Diatom Endosymbiont
  • 2016
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:9, s. 2376-2390
  • Tidskriftsartikel (refereegranskat)abstract
    • While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate.
  •  
8.
  • Janouskovec, Jan, et al. (författare)
  • A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction
  • 2017
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 27:23, s. 3717-3724.e5
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of eukaryotic cells represents a key transition in cellular evolution and is closely tied to outstanding questions about mitochondrial endosymbiosis [1, 2]. For example, gene-rich mitochondrial genomes are thought to be indicative of an ancient divergence, but this relies on unexamined assumptions about endosymbiont-to-host gene transfer [3-5]. Here, we characterize Ancoracysta twista, a new predatory flagellate that is not closely related to any known lineage in 201-protein phylogenomic trees and has a unique morphology, including a novel type of extrusome (ancoracyst). The Ancoracysta mitochondrion has a gene-rich genome with a coding capacity exceeding that of all other eukaryotes except the distantly related jakobids and Diphylleia, and it uniquely possesses heterologous, nucleus-, and mitochondrion-encoded cytochrome c maturase systems. To comprehensively examine mitochondrial genome reduction, we also assembled mitochondrial genomes from picozoans and colponemids and re-annotated existing mitochondrial genomes using hidden Markov model gene profiles. This revealed over a dozen previously overlooked mitochondrial genes at the level of eukaryotic supergroups. Analysis of trends over evolutionary time demonstrates that gene transfer to the nucleus was non-linear, that it occurred in waves of exponential decrease, and that much of it took place comparatively early, massively independently, and with lineage-specific rates. This process has led to differential gene retention, suggesting that gene-rich mitochondrial genomes are not a product of their early divergence. Parallel transfer of mitochondrial genes and their functional replacement by new nuclear factors are important in models for the origin of eukaryotes, especially as major gaps in our knowl-edge of eukaryotic diversity at the deepest level remain unfilled.
  •  
9.
  • Keeling, Patrick J., et al. (författare)
  • Progress towards the Tree of Eukaryotes
  • 2019
  • Ingår i: Current Biology. - : CELL PRESS. - 0960-9822 .- 1879-0445. ; 29:16, s. R808-R817
  • Forskningsöversikt (refereegranskat)abstract
    • Developing a detailed understanding of how all known forms of life are related to one another in the tree of life has been a major preoccupation of biology since the idea of tree-like evolution first took hold. Since most life is microbial, our intuitive use of morphological comparisons to infer relatedness only goes so far, and molecular sequence data, most recently from genomes and transcriptomes, has been the primary means to infer these relationships. For prokaryotes this presented new challenges, since the degree of horizontal gene transfer led some to question the tree-like depiction of evolution altogether. Most eukaryotes are also microbial, but in contrast to prokaryotic life, the application of large-scale molecular data to the tree of eukaryotes has largely been a constructive process, leading to a small number of very diverse lineages, or 'supergroups'. The tree is not completely resolved, and contentious problems remain, but many well-established supergroups now encompass much more diversity than the traditional kingdoms. Some of the most exciting recent developments come from the discovery of branches in the tree that we previously had no inkling even existed, many of which are of great ecological or evolutionary interest. These new branches highlight the need for more exploration, by high-throughput molecular surveys, but also more traditional means of observations and cultivation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy