SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keler C.) "

Sökning: WFRF:(Keler C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Benkner, S., et al. (författare)
  • Peppher: Performance Portability and Programmability for Heterogeneous Many-Core Architectures
  • 2017
  • Ingår i: Programming Multicore and Many-Core Computing Systems. - Hoboken, NJ, USA : John Wiley & Sons, Inc.. - 9781119332015 - 9780470936900 ; , s. 241-260
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • © 2017 by John Wiley & Sons, Inc. All rights reserved. PEPPHER takes a pluralistic and parallelization agnostic approach to programmability and performance portability for heterogeneous many-core architectures. The PEPPHER framework is in principle language independent but focuses on supporting C++ code with PEPPHER-specific annotations as pragmas or external annotations. The framework is open and extensible; the PEPPHER methodology details how new architectures are incorporated. The PEPPHER methodology consists of rules for how to extend the framework for new architectures. This mainly concerns adaptivity and autotuning for algorithm libraries, the necessary hooks and extensions for the run-time system and any supporting algorithms and data structures that this relies on. Offloading is a specific technique for programming heterogeneous platforms that can sometimes be applied with high efficiency. Offload as developed by the PEPPHER partner Codeplay is a particular, nonintrusive C++ extension allowing portable C++ code to support diverse heterogeneous multicore architectures in a single code base.
  •  
3.
  • Cohn, L, et al. (författare)
  • Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation
  • 2013
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 210:5, s. 1049-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • Human BDCA3+ dendritic cells (DCs), the proposed equivalent to mouse CD8α+ DCs, are widely thought to cross present antigens on MHC class I (MHCI) molecules more efficiently than other DC populations. If true, it is unclear whether this reflects specialization for cross presentation or a generally enhanced ability to present antigens on MHCI. We compared presentation by BDCA3+ DCs with BDCA1+ DCs using a quantitative approach whereby antigens were targeted to distinct intracellular compartments by receptor-mediated internalization. As expected, BDCA3+ DCs were superior at cross presentation of antigens delivered to late endosomes and lysosomes by uptake of anti-DEC205 antibody conjugated to antigen. This difference may reflect a greater efficiency of antigen escape from BDCA3+ DC lysosomes. In contrast, if antigens were delivered to early endosomes through CD40 or CD11c, BDCA1+ DCs were as efficient at cross presentation as BDCA3+ DCs. Because BDCA3+ DCs and BDCA1+ DCs were also equivalent at presenting peptides and endogenously synthesized antigens, BDCA3+ DCs are not likely to possess mechanisms for cross presentation that are specific to this subset. Thus, multiple DC populations may be comparably effective at presenting exogenous antigens to CD8+ T cells as long as the antigen is delivered to early endocytic compartments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy