SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kell D. B.) "

Sökning: WFRF:(Kell D. B.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thiele, I., et al. (författare)
  • A community-driven global reconstruction of human metabolism
  • 2013
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 31:5, s. 419-
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including similar to 2x more reactions and similar to 1.7x more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type-specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
  •  
2.
  • Bryant, C.H., et al. (författare)
  • Combining Inductive Logic Programming, Active Learning and Robotics to Discover the Function of Genes
  • 2001
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • We aim to partially automate some aspects of scientific work, namely the processes of forming hypotheses, devising trials to discriminate between these competing hypotheses, physically performing these trials and then using the results of these trials to converge upon an accurate hypothesis. We have developed ASE-Progol, an Active Learning system which uses Inductive Logic Programming to construct hypothesised first-order theories and uses a CART-like algorithm to select trials for eliminating ILP derived hypotheses. We have developed a novel form of learning curve, which in contrast to the form of learning curve normally used in Active Learning, allows one to compare the costs incurred by different leaning strategies.We plan to combine ASE-Progol with a standard laboratory robot to create a general automated approach to Functional Genomics. As a first step towards this goal, we are using ASE-Progol to rediscover how genes participate in the aromatic amino acid pathway of Saccharomyces cerevisiae. Our approach involves auxotrophic mutant trials. To date, ASE-Progol has conducted such trials in silico. However we describe how they will be performed automatically in vitro by a standard laboratory robot designed for these sorts of liquid handling tasks, namely the Beckman/Coulter Biomek 2000.Although our work to date has been limited to trials conducted in silico, the results have been encouraging. Parts of the model were removed and the ability of ASE-Progol to efficiently recover the performance of the model was measured. The cost of the chemicals consumed in converging upon a hypothesis with an accuracy in the range 46-88% was reduced if trials were selected by ASE-Progol rather than if they were sampled at random (without replacement). To reach an accuracy in the range 46-80%, ASE-Progol incurs five orders of magnitude less experimental costs than random sampling. ASE-Progol requires less time to converge upon a hypothesis with an accuracy in the range 74-87% than if trials are sampled at random (without replacement) or selected using the naive strategy of always choosing the cheapest trial from the set of candidate trials. For example to reach an accuracy of 80%, ASE-Progol requires 4 days while random sampling requires 6 days and the naive strategy requires 10 days.
  •  
3.
  • Itzhaki, Ruth F., et al. (författare)
  • Microbes and Alzheimer's Disease
  • 2016
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 51:4, s. 979-984
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We are researchers and clinicians working on Alzheimer’s disease (AD) or related topics, and we write to express our concern that one particular aspect of the disease has been neglected, even though treatment based on it might slow or arrest AD progression. We refer to the many studies, mainly on humans, implicating specific microbes in the elderly brain, notably herpes simplex virus type 1 (HSV1), Chlamydia pneumoniae, and several types of spirochaete, in the etiology of AD [1–4]. Fungal infection of AD brain [5, 6] has also been described, as well as abnormal microbiota in AD patient blood [7]. The first observations of HSV1 in AD brain were reported almost three decades ago [8]. The ever-increasing number of these studies (now about 100 on HSV1 alone) warrants re-evaluation of the infection and AD concept.AD is associated with neuronal loss and progressive synaptic dysfunction, accompanied by the deposition of amyloid-β (Aβ) peptide, a cleavage product of the amyloid-β protein precursor (AβPP), and abnormal forms of tau protein, markers that have been used as diagnostic criteria for the disease [9, 10]. These constitute the hallmarks of AD, but whether they are causes of AD or consequences is unknown. We suggest that these are indicators of an infectious etiology. In the case of AD, it is often not realized that microbes can cause chronic as well as acute diseases; that some microbes can remain latent in the body with the potential for reactivation, the effects of which might occur years after initial infection; and that people can be infected but not necessarily affected, such that ‘controls’, even if infected, are asymptomatic
  •  
4.
  • Itzhaki, Ruth F., et al. (författare)
  • Microbes and Alzheimer's disease
  • 2017
  • Ingår i: Handbook of infection and Alzheimer's disease. - : IOS Press. - 9781614997054 - 9781614997061 ; , s. 3-8
  • Bokkapitel (refereegranskat)
  •  
5.
  • Reiser, Philip G.K., et al. (författare)
  • Developing a Logical Model of Yeast Metabolism
  • 2001
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • With the completion of the sequencing of genomes of an increasing number of organisms, the focus of biology is moving to determining the role of these genes (functional genomics). To this end it is useful to view the cell as a biochemical machine: it consumes simple molecules to manufacture more complex ones by chaining together biochemical reactions into long sequences referred to as metabolic pathways. Such metabolic pathways are not linear but often intersect to form a complex network. Genes play a fundamental role in this network by synthesising the enzymes that catalyse biochemical reactions. Although developing a complete model of metabolism is of fundamental importance to biology and medicine, the size and complexity of the network has proven beyond the capacity of human reasoning. This paper presents intermediate results in the Robot Scientist research programme that aims to discover the function of genes in the metabolism of the yeast Saccharomyces cerevisiae. Results include: (1) the first logical model of metabolism; (2) a method to predict phenotype by deductive inference; and (3) a method to infer reactions and gene function by abductive inference. We describe the in vivo experimental set-up which will allow these in silico inferences to be automatically tested by a laboratory robot.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy