SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kelley Maxwell) "

Sökning: WFRF:(Kelley Maxwell)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, Rasha, et al. (författare)
  • IceCube search for neutrinos from GRB 221009A
  • 2023
  • Ingår i: Proceedings of 38th International Cosmic Ray Conference (ICRC 2023). - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    •  GRB 221009A is the brightest Gamma Ray Burst (GRB) ever observed. The observed extremelyhigh flux of high and very-high-energy photons provide a unique opportunity to probe the predictedneutrino counterpart to the electromagnetic emission. We have used a variety of methods to searchfor neutrinos in coincidence with the GRB over several time windows during the precursor, promptand afterglow phases of the GRB. MeV scale neutrinos are studied using photo-multiplier ratescalers which are normally used to search for galactic core-collapse supernovae neutrinos. GeVneutrinos are searched starting with DeepCore triggers. These events don’t have directionallocalization, but instead can indicate an excess in the rate of events. 10 GeV - 1 TeV and >TeVneutrinos are searched using traditional neutrino point source methods which take into accountthe direction and time of events with DeepCore and the entire IceCube detector respectively. The>TeV results include both a fast-response analysis conducted by IceCube in real-time with timewindows of T0 − 1 to T0 + 2 hours and T0 ± 1 day around the time of GRB 221009A, as well asan offline analysis with 3 new time windows up to a time window of T0 − 1 to T0 + 14 days, thelongest time period we consider. The combination of observations by IceCube covers 9 ordersof magnitude in neutrino energy, from MeV to PeV, placing upper limits across the range forpredicted neutrino emission.
  •  
2.
  • Pithan, Felix, et al. (författare)
  • Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice : the Larcform 1 single column model intercomparison
  • 2016
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 8:3, s. 1345-1357
  • Tidskriftsartikel (refereegranskat)abstract
    • Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.
  •  
3.
  • Way, Michael J., et al. (författare)
  • Climates of Warm Earth-like Planets. I. 3D Model Simulations
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP PUBLISHING LTD. - 0067-0049 .- 1538-4365. ; 239:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a large ensemble of simulations of an Earth-like world with increasing insolation and rotation rate. Unlike previous work utilizing idealized aquaplanet configurations, we focus our simulations on modern Earth-like topography. The orbital period is the same as that of modern Earth, but with zero obliquity and eccentricity. The atmosphere is 1 bar N-2-dominated with CO2 = 400 ppmv and CH4 = 1 ppmv. The simulations include two types of oceans: one without ocean heat transport (OHT) between grid cells, as has been commonly used in the exoplanet literature, and the other a fully coupled dynamic bathtub type ocean. The dynamical regime transitions that occur as day length increases induce climate feedbacks producing cooler temperatures, first via the reduction of water vapor with increasing rotation period despite decreasing shortwave cooling by clouds, and then via decreasing water vapor and increasing shortwave cloud cooling, except at the highest insolations. Simulations without OHT are more sensitive to insolation changes for fast rotations, while slower rotations are relatively insensitive to ocean choice. OHT runs with faster rotations tend to be similar with gyres transporting heat poleward, making them warmer than those without OHT. For slower rotations OHT is directed equatorward and no high-latitude gyres are apparent. Uncertainties in cloud parameterization preclude a precise determination of habitability but do not affect robust aspects of exoplanet climate sensitivity. This is the first paper in a series that will investigate aspects of habitability in the simulations presented herein. The data sets from this study are open source and publicly available.
  •  
4.
  • Way, Michael J., et al. (författare)
  • Was Venus the first habitable world of our solar system?
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:16, s. 8376-8383
  • Tidskriftsartikel (refereegranskat)abstract
    • Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a prograde rotation period slower than similar to 16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venus's climate could have remained habitable until at least 0.715 Gya. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy