SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kellman D.) "

Sökning: WFRF:(Kellman D.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Nickander, J, et al. (författare)
  • Stress native T1 and native T2 mapping compared to myocardial perfusion reserve in long-term follow-up of severe Covid-19
  • 2023
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 13:1, s. 4159-
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe Covid-19 may cause a cascade of cardiovascular complications beyond viral pneumonia. The severe inflammation may affect the microcirculation which can be assessed by cardiovascular magnetic resonance (CMR) imaging using quantitative perfusion mapping and calculation of myocardial perfusion reserve (MPR). Furthermore, native T1 and T2 mapping have previously been shown to identify changes in myocardial perfusion by the change in native T1 and T2 during adenosine stress. However, the relationship between native T1, native T2, ΔT1 and ΔT2 with myocardial perfusion and MPR during long-term follow-up in severe Covid-19 is currently unknown. Therefore, patients with severe Covid-19 (n = 37, median age 57 years, 24% females) underwent 1.5 T CMR median 292 days following discharge. Quantitative myocardial perfusion (ml/min/g), and native T1 and T2 maps were acquired during adenosine stress, and rest, respectively. Both native T1 (R2 = 0.35, p < 0.001) and native T2 (R2 = 0.28, p < 0.001) correlated with myocardial perfusion. However, there was no correlation with ΔT1 or ΔT2 with MPR, respectively (p > 0.05 for both). Native T1 and native T2 correlate with myocardial perfusion during adenosine stress, reflecting the coronary circulation in patients during long-term follow-up of severe Covid-19. Neither ΔT1 nor ΔT2 can be used to assess MPR in patients with severe Covid-19.
  •  
3.
  • Nickander, J, et al. (författare)
  • Stress native T1 and native T2 mapping compared to myocardial perfusion reserve in long-term follow-up of severe Covid-19
  • 2023
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 13:1, s. 4159-
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe Covid-19 may cause a cascade of cardiovascular complications beyond viral pneumonia. The severe inflammation may affect the microcirculation which can be assessed by cardiovascular magnetic resonance (CMR) imaging using quantitative perfusion mapping and calculation of myocardial perfusion reserve (MPR). Furthermore, native T1 and T2 mapping have previously been shown to identify changes in myocardial perfusion by the change in native T1 and T2 during adenosine stress. However, the relationship between native T1, native T2, ΔT1 and ΔT2 with myocardial perfusion and MPR during long-term follow-up in severe Covid-19 is currently unknown. Therefore, patients with severe Covid-19 (n = 37, median age 57 years, 24% females) underwent 1.5 T CMR median 292 days following discharge. Quantitative myocardial perfusion (ml/min/g), and native T1 and T2 maps were acquired during adenosine stress, and rest, respectively. Both native T1 (R2 = 0.35, p < 0.001) and native T2 (R2 = 0.28, p < 0.001) correlated with myocardial perfusion. However, there was no correlation with ΔT1 or ΔT2 with MPR, respectively (p > 0.05 for both). Native T1 and native T2 correlate with myocardial perfusion during adenosine stress, reflecting the coronary circulation in patients during long-term follow-up of severe Covid-19. Neither ΔT1 nor ΔT2 can be used to assess MPR in patients with severe Covid-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Liu, X (1)
Hansen, E. (1)
Chen, X. (1)
Huang, Y. (1)
Izzo, V. (1)
Ji, H. (1)
visa fler...
King, M. (1)
Kobayashi, T. (1)
Li, L. (1)
Li, Y. (1)
Liu, D. (1)
Liu, Y. (1)
Nelson, A. (1)
Qian, J. (1)
Su, D. (1)
Suzuki, Y. (1)
Wang, H. (1)
White, R. (1)
Wu, M. (1)
Wu, Y. (1)
Yan, Z. (1)
Yu, J. (1)
Zhang, J. (1)
Zhang, L. (1)
Zhang, X. (1)
Zhu, J. (1)
Zhu, Y. (1)
Hu, Q. (1)
Liu, J. (1)
Zhang, R. (1)
Brown, G. (1)
Li, X. (1)
Xu, C. (1)
Zhao, L. (1)
Liu, C. (1)
Smith, D. (1)
Banerjee, S. (1)
Liu, T. (1)
Han, H. (1)
Hill, D. (1)
Li, J. (1)
Robinson, J. (1)
Yu, M. (1)
Ren, Y. (1)
Park, J (1)
Wei, Y. (1)
Adams, M. (1)
Kim, H. S. (1)
Yang, S. (1)
Hu, Y. (1)
visa färre...
Lärosäte
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy