SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kendrew Sarah) "

Sökning: WFRF:(Kendrew Sarah)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Perez-Gonzalez, Pablo G., et al. (författare)
  • Life beyond 30 : Probing the-20 < M (UV) <-17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the ultraviolet luminosity function and an estimate of the cosmic star formation rate density at 8 < z < 13 derived from deep NIRCam observations taken in parallel with the MIRI Deep Survey of the Hubble Ultra Deep Field (HUDF), NIRCam covering the parallel field 2. Our deep (40 hr) NIRCam observations reach an F277W magnitude of 30.8 (5 & sigma;), more than 2 mag deeper than JWST public data sets already analyzed to find high-redshift galaxies. We select a sample of 44 z > 8 galaxy candidates based on their dropout nature in the F115W and/or F150W filters, a high probability for their photometric redshifts, estimated with three different codes, being at z > 8, good fits based on & chi; (2) calculations, and predominant solutions compared to z < 8 alternatives. We find mild evolution in the luminosity function from z & SIM; 13 to z & SIM; 8, i.e., only a small increase in the average number density of & SIM;0.2 dex, while the faint-end slope and absolute magnitude of the knee remain approximately constant, with values & alpha; = - 2.2 & PLUSMN; 0.1, and M * = - 20.8 & PLUSMN; 0.2 mag. Comparing our results with the predictions of state-of-the-art galaxy evolution models, we find two main results: (1) a slower increase with time in the cosmic star formation rate density compared to a steeper rise predicted by models; (2) nearly a factor of 10 higher star formation activity concentrated in scales around 2 kpc in galaxies with stellar masses & SIM;10(8) M (& ODOT;) during the first 350 Myr of the universe, z & SIM; 12, with models matching better the luminosity density observational estimations & SIM;150 Myr later, by z & SIM; 9.
  •  
2.
  • Barrado, David, et al. (författare)
  • 15NH3 in the atmosphere of a cool brown dwarf
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 624:7991, s. 263-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets. 
  •  
3.
  • Bell, Taylor, et al. (författare)
  • Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.
  •  
4.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
5.
  • Dyrek, Achrène, et al. (författare)
  • SO2, silicate clouds, but no CH4 detected in a warm Neptune
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 μm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8,9,10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 μm and 8.69 μm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy