SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keronen P.) "

Sökning: WFRF:(Keronen P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramonet, M., et al. (författare)
  • The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements : Atmospheric CO 2 anomaly
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
2.
  • Granier, A., et al. (författare)
  • Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003
  • 2007
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 143:1-2, s. 123-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The drought of 2003 was exceptionally severe in many regions of Europe, both in duration and in intensity. In some areas, especially in Germany and France, it was the strongest drought for the last 50 years, lasting for more than 6 months. We used continuous carbon and water flux measurements at 12 European monitoring sites covering various forest ecosystem types and a large climatic range in order to characterise the consequences of this drought on ecosystems functioning. As soil water content in the root zone was only monitored in a few sites, a daily water balance model was implemented at each stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured climate and site properties: leaf area index and phenology that both determine tree transpiration and rainfall interception, soil characteristics and root distribution, both influencing water absorption and drainage. At sites where soil water content was measured, we observed a good agreement between measured and modelled soil water content. Our analysis showed a wide spatial distribution of drought stress over Europe, with a maximum intensity within a large band extending from Portugal to NE Germany. Vapour fluxes in all the investigated sites were reduced by drought, due to stomatal closure, when the relative extractable water in soil (REW) dropped below ca. 0.4. Rainfall events during the drought, however, typically induced rapid restoration of vapour fluxes. Similar to the water vapour fluxes, the net ecosystem production decreased with increasing water stress at all the sites. Both gross primary production (GPP) and total ecosystem respiration (TER) also decreased when REW dropped below 0.4 and 0.2, for GPP and TER, respectively. A higher sensitivity to drought was found in the beech, and surprisingly, in the broadleaved Mediterranean forests; the coniferous stands (spruce and pine) appeared to be less drought-sensitive. The effect of drought on tree growth was also large at the three sites where the annual tree growth was measured. Especially in beech, this growth reduction was more pronounced in the year following the drought (2004). Such lag effects on tree growth should be considered an important feature in forest ecosystems, which may enhance vulnerability to more frequent climate extremes.
  •  
3.
  • Kyro, E. -M, et al. (författare)
  • Trends in new particle formation in eastern Lapland, Finland : effect of decreasing sulfur emissions from Kola Peninsula
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4383-4396
  • Tidskriftsartikel (refereegranskat)abstract
    • The smelter industry in Kola Peninsula is the largest source of anthropogenic SO2 in the Arctic part of Europe and one of the largest within the Arctic domain. Due to socio-economic changes in Russia, the emissions have been decreasing especially since the late 1990s resulting in decreased SO2 concentrations close to Kola in eastern Lapland, Finland. At the same time, the frequency of new particle formation days has been decreasing distinctively at SMEAR I station in eastern Lapland, especially during spring and autumn. We show that sulfur species, namely sulfur dioxide and sulfuric acid, have an important role in both new particle formation and subsequent growth and that the decrease in new particle formation days is a result of the reduction of sulfur emissions originating from Kola Peninsula. In addition to sulfur species, there are many other quantities, such as formation rate of aerosol particles, condensation sink and nucleation mode particle number concentration, which are related to the number of observed new particle formation (NPF) days and need to be addressed when linking sulfur emissions and NPF. We show that while most of these quantities exhibit statistically significant trends, the reduction in Kola sulfur emissions is the most obvious reason for the rapid decline in NPF days. Sulfuric acid explains approximately 20-50% of the aerosol condensational growth observed at SMEAR I, and there is a large seasonal variation with highest values obtained during spring and autumn. We found that (i) particles form earlier after sunrise during late winter and early spring due to high concentrations of SO2 and H2SO4; (ii) several events occurred during the absence of light, and they were connected to higher than average concentrations of SO2; and (iii) high SO2 concentrations could advance the onset of nucleation by several hours. Moreover, air masses coming over Kola Peninsula seemed to favour new particle formation.
  •  
4.
  • Ruuskanen, T. M., et al. (författare)
  • Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Varrio field station
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 7:14, s. 3683-3700
  • Tidskriftsartikel (refereegranskat)abstract
    • The LAPBIAT measurement campaign took place in the Varrio SMEAR I measurement station located in Eastern Lapland in the spring of 2003 between 26 April and 11 May. In this paper we describe the measurement campaign, concentrations and fluxes of aerosol particles, air ions and trace gases, paying special attention to an aerosol particle formation event broken by a air mass change from a clean Arctic air mass with new particle formation to polluted one approaching from industrial areas of Kola Peninsula, Russia, lacking new particle formation. Aerosol particle number flux measurements show strong downward fluxes during that time. Concentrations of coarse aerosol particles were high for 1-2 days before the nucleation event (i.e. 28-29 April), very low immediately before and during the observed aerosol particle formation event (30 April) and increased moderately from the moment of sudden break of the event. In general particle deposition measurements based on snow samples show the same changes. Measurements of the mobility distribution of air ions showed elevated concentrations of intermediate air ions during the particle formation event. We estimated the growth rates in the nucleation mode size range. For particles <10 nm, the growth rate increases with size on 30 April. Dispersion modelling made with model SILAM support the conclusion that the nucleation event was interrupted by an outbreak of sulphate-rich air mass in the evening of 30 April that originated from the industry at Kola Peninsula, Russia. The results of this campaign highlight the need for detailed research in atmospheric transport of air constituents for understanding the aerosol dynamics.
  •  
5.
  •  
6.
  • Chen, Dean, et al. (författare)
  • A modelling study of OH, NO3 and H2SO4 in 2007- 2018 at SMEAR II, Finland : Analysis of long-term trends
  • 2021
  • Ingår i: Environmental Science: Atmospheres. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 1:6, s. 449-472
  • Tidskriftsartikel (refereegranskat)abstract
    • Major atmospheric oxidants (OH,O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation. Although numerous studies have investigated the long-term trend of ozone in Europe, the trends of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station and has been validated by measurements in several projects. Here, we applied the SOSAA model for the years 2007-2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants OH and NO3, as well as H2SO4 at SMEAR II. The simulations were evaluated with observations from several shorter and longer campaigns at SMEAR II. Our results show that daily OH increased by 2.39% per year and NO3 decreased by 3.41% per year, with different trends of these oxidants during day and night. On the contrary, daytime sulfuric acid concentrations decreased by 2.78% per year, which correlated with the observed decreasing concentration of newly formed particles in the size range of 3- 25 nm with 1.4% per year at SMEAR II during the years 1997-2012. Additionally, we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case a limited number of parameters are measured and no detailed model simulations are available.
  •  
7.
  •  
8.
  • Kyro, Ella-Maria, et al. (författare)
  • Long-term Aerosol and Trace Gas Measurements in Eastern Lapland, Finland : The Impact of Kola Air Pollution to New Particle Formation
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 409-412
  • Konferensbidrag (refereegranskat)abstract
    • Sulfur emissions from the Kola Peninsula smelter industry have been decreasing over the past two decades. We investigated the effect of this to new particle formation at SMEAR I station in Eastern Lapland, Finland, using long-term measurements of trace gases and aerosol size distributions. We show that the number of events per year has decreased and can be linked with the decreasing sulfur emissions from Kola.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy