SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kerstein Alan R.) "

Sökning: WFRF:(Kerstein Alan R.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Movaghar, Amirreza, 1987, et al. (författare)
  • A subgrid-scale model for large-eddy simulation of liquid/gas interfaces based on one-dimensional turbulence
  • 2019
  • Ingår i: ERCOFTAC Series. - Cham : Springer International Publishing. - 1382-4309 .- 2215-1826. ; , s. 83-91
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The interface/turbulence interaction between two fluids in a turbulent environment has an important role in many technical processes, e.g. primary liquid atomization in combustion devices. Primary atomization has a significant role in spray formation and its characteristics. The resulting dynamics typically span 4–6 orders of magnitude in length scales, making detailed numerical simulations exceedingly expensive. This motivates the need for modeling approaches based on spatial filtering such as large-eddy simulation (LES). In this paper, a new approach based on One-Dimensional turbulence (ODT) is presented to describe the subgrid interface dynamics. ODT is a stochastic model simulating turbulent flow evolution along a notional one-dimensional line of sight by applying instantaneous maps that represent the effects of individual turbulent eddies on property fields. It provides affordable high resolution of interface creation and property gradients within each phase, which are key for capturing the local behavior as well as overall trends. ODT has previously been shown to reproduce the main features of an experimentally determined regime diagram for primary jet breakup. Here a new approach called VODT is presented which produces a size-conditioned as well as a total time rate of generation of droplets for given flow conditions at an interface. At the LES level, the total droplet generation from VODT is interpreted as a rate of mass conversion of LES-resolved liquid into unresolved droplets. Preliminary results of applying VODT to a cell with a planar-shear-layer are discussed at the end of the paper.
  •  
2.
  • Fistler, Marco, 1989, et al. (författare)
  • Turbulence modulation in particle-laden stationary homogeneous shear turbulence using one-dimensional turbulence
  • 2020
  • Ingår i: Physical Review Fluids. - 2469-990X. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence modulation in particle-laden stationary homogeneous shear turbulence (HST) is investigated using one-dimensional turbulence (ODT), a low-dimensional stochastic flow simulation model. For this purpose, an ODT formulation previously used to study turbulence modulation in forced homogeneous isotropic turbulence (HIT) is extended, so that the model emulates the anisotropic character of HST and, potentially, anisotropic turbulence in general. This is done by limiting the kinetic-energy redistribution during an eddy event to an exchange involving two velocity components, where the three possible choices of the omitted component define three eddy types whose relative likelihoods control the anisotropy. Comparisons of ODT and direct-numerical-simulation results with reference to signatures of turbulence modulation are the basis of a broader ODT parameter study that is reported. Owing to the reduced dimensionality of ODT, it is found that the fidelity of the model for single-phase HST does not extend to particle effects on flow anisotropy, but for quantities averaged over components, parametric trends are captured. The consistent approach to case comparisons that was introduced in the HIT study to evaluate sensitivities to particle-phase parameters in a given flow configuration is extended here to a cross-comparison of HST and HIT model results, and its efficacy is again confirmed. The results provide an overall characterization of the potential for ODT to support the incorporation of particle-induced turbulence modulation into subgrid-scale closures of large-eddy simulations.
  •  
3.
  • Gruber, Andrea, et al. (författare)
  • Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers
  • 2014
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 0082-0784 .- 1878-027X .- 1540-7489.
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct numerical simulations of freely-propagating premixed flames in the turbulent boundary layer of fully-developed turbulent channel flows are used for a priori validation of a new model that aims to describe the mean shape of the turbulent flame brush during flashback. Comparison with the DNS datasets, for both fuel-lean and fuel-rich mixture conditions and for Damköhler numbers lower and larger than unity, shows that the model is able to capture the main features of the flame shape. Although further a priori and a posteriori validation is required, particularly at higher Reynolds numbers, this new simple model seems promising and can potentially have impact on the design process of industrial combustion equipment.
  •  
4.
  • Kerstein, Alan R., et al. (författare)
  • Parameter dependences of the onset of turbulent liquid-jet breakup
  • 2017
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 811
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have predicted We(-2/5) dependence of the streamwise location at which primary breakup of turbulent liquid jets begins and We(-3/5) dependence of the Sauter mean diameter (SMD) of droplets released at that location, where We is the jet Weber number. Measured deviations from these predictions were attributed to measurement uncertainties and to the simplicity of the analysis, which invoked turbulence inertial-range phenomenology. Here, it is proposed that breakup onset is instead controlled by the residual presence of the boundary-layer structure of the nozzle flow in the near field of the jet. Assuming that the size of the breakup inducing eddy is within the scale range of the log-law region. We(-1) dependence of both the onset location and the SMD at onset is predicted. These dependences agree with the available measurements more closely than those previously predicted. lb predict the dependences on the Reynolds number Re, either the friction velocity in conjunction with the Blasius friction law or the hulk velocity can he used, where the former yields Re-3/8 and Re-1/4 dependence of the onset location and the SMD at onset respectively, while the latter implies no Re dependence of either. 'f he latter result is consistent with the available measurements, but the boundary-layer analysis indicates that the velocity scaling should be based on the friction velocity rather than the bulk velocity, so the origin of the measured lack of Re dependence merits further investigation. A plausible hypothesis is that pressure effects associated with the transition from wall-bounded nozzle flow to jet free-slip boundary conditions induce a transient large-scale flow modification that counteracts the Re dependence of the nozzle flow while preserving the logarithmic flow structure near the jet surface. Notwithstanding the absence of direct evidence supporting this hypothesis, the new analysis and comparisons of its predictions with measurements suggest that transient effects such as the residual influence of the nozzle-flow structure are the likely explanations of the observed parameter dependences.
  •  
5.
  • Lackmann, Tim, 1983, et al. (författare)
  • A representative linear eddy model for simulating spray combustion in engines (RILEM)
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 193, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of new combustion concepts for low emission, high efficiency internal combustion engines often leads to combustion under low temperature conditions. Under those conditions, the assumption of fast chemistry, which has been the cornerstone of many turbulent combustion models, is not strictly valid anymore and the validity and applicability of classical combustion models such as flamelet models might be limited. In this paper we present an updated version of a recently developed regime independent modeling approach for turbulent non-premixed combustion with an emphasis on applications to internal combustion engines. The model utilizes the mode-and regime-independent linear eddy model (LEM) as a combustion and micro-mixing model in a representative way. This is achieved by time advancing only one LEM realization representing the combustion process in the whole engine domain and coupling it to a RANS simulation with a presumed 9-function PDF approach for the mixture fraction. The use of LEM rather than flamelet combustion closure has several benefits, an important one being regime independence. Additionally, LEM incorporates a physically based representation of the stochastic variability of turbulent eddy motions, implying an intrinsic representation of scalar dissipation rate fluctuations. In order to capture key features of engine spray-combustion environments, the LEM methodology is extended by introducing a conical LEM domain to approximate spray spatial development, fuel vapor input based on CFD-prescribed spray evaporation, and a representation of large scale turbulent motions distinct from the inertial-range turbulence that develops at smaller scales. The representative character of LEM states is evaluated by comparing mixture fraction statistics and scalar dissipation rates generated by LEM and the CFD. The performance and predictive capability of the model for typical engine applications is evaluated by simulating a standard test case-Spray B of the Engine Combustion Network (ECN)-and comparing the results with experimental data. The results demonstrate the capability of the model to represent the spray combustion process with reasonable accuracy but also reveal some limitations. The limitations and shortcomings of the model are discussed and an outlook for further development of the approach into a regime-and mode-independent combustion model for internal engine applications is given. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
6.
  • Lignell, David, et al. (författare)
  • One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application
  • 2018
  • Ingår i: Theoretical and Computational Fluid Dynamics. - : Springer Science and Business Media LLC. - 1432-2250 .- 0935-4964. ; 32:4, s. 495-520
  • Tidskriftsartikel (refereegranskat)abstract
    • The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.
  •  
7.
  • Movaghar, Amirreza, 1987, et al. (författare)
  • Modeling and numerical study of primary breakup under diesel conditions
  • 2018
  • Ingår i: International Journal of Multiphase Flow. - : Elsevier BV. - 0301-9322. ; 98:2018, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • A recently introduced stochastic model for reduced numerical simulation of primary jet breakup is evaluated by comparing model predictions to DNS results for primary jet breakup under diesel conditions. The model uses one-dimensional turbulence (ODT) to simulate liquid and gas time advancement along a lateral line of sight. This one-dimensional domain is interpreted as a Lagrangian object that is advected downstream at the jet bulk velocity, thus producing a flow state expressed as a function of streamwise and lateral location. Multiple realizations are run to gather ensemble statistics that are compared to DNS results. The model incorporates several empirical extensions of the original ODT model that represent the phenomenology governing the Weber number dependence of global jet structure. The model as previously formulated, including the assigned values of tunable parameters, is used here without modification in order to test its capability to predict various statistics of droplets generated by primary breakup. This test is enabled by the availability of DNS results that are suitable for model validation. Properties that are examined are the rate of bulk liquid mass conversion into droplets, the droplet size distribution, and the dependence of droplet velocities on droplet diameter. Quantities of greatest importance for engine modeling are found to be predicted with useful accuracy, thereby demonstrating a more detailed predictive capability by a highly reduced numerical model of primary jet breakup than has previously been achieved.
  •  
8.
  • Movaghar, Amirreza, 1987, et al. (författare)
  • Numerical and experimental studies of liquid breakup at the surface of turbulent jets
  • 2015
  • Ingår i: ICLASS 2015 - 13th International Conference on Liquid Atomization and Spray Systems.
  • Konferensbidrag (refereegranskat)abstract
    • Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. This paper presents a numerical investigation of primary breakup of a planar turbulent liquid jet in still air at standard conditions for jet exit Reynolds numbers of 10000 and 23000 and Weber number is varied within the range [102–107]. Due to the limitation of direct numerical simulation (DNS) to moderate Reynolds numbers, the one-dimensional turbulence (ODT) model is used to simulate the jet with high lateral resolution. ODT permits affordable high resolution of interfaces and single-phase property gradients which are essential for capturing the local behavior of the breakup process. ODT is a stochastic model simulating turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. ODT has recently been used by the authors to reproduce the main features of an experimentally determined regime diagram for primary jet breakup. In this study we apply the model to the high Re number regime and compare to new experimental data.
  •  
9.
  • Movaghar, Amirreza, 1987, et al. (författare)
  • Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence
  • 2017
  • Ingår i: International Journal of Multiphase Flow. - : Elsevier BV. - 0301-9322. ; 89, s. 241-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary breakup to form droplets at liquid surfaces is an important fundamental process to study as it determines the initial properties of the dispersed phase, which affect mixing rates, secondary breakup, droplet collisions, and flow separation within the dispersed flow region. Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. However, it is of paramount importance in many technical applications, e.g. fuel injection in engines and spray painting. This paper presents a numerical investigation of primary breakup of a turbulent liquid jet in still air at standard conditions using the one-dimensional turbulence (ODT) modeling framework. ODT is a stochastic model that simulates turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. An important feature of ODT is the resolution of all relevant scales, both temporal and spatial. The restriction to one spatial dimension in ODT permits affordable high resolution of interfacial and single-phase property gradients, which is key to capturing the local behavior of the breakup process and allows simulations at high Reynolds and Weber numbers that are currently not accessible to direct numerical simulations (DNS). This paper summarizes our extensions of the ODT model to simulate geometrically simple jet breakup problems, including representations of Rayleigh wave breakup, turbulent breakup, and shear-driven breakup. Each jet breakup simulation consists of a short temporal channel section to initialize a turbulent velocity profile at the nozzle exit followed by an adjacent jet section. The simulations are carried out for jet exit Reynolds number of 11,500, 23,000, 46,000 and 92,000 while the Weber number is varied within the range 102–107. We present results on breakup statistics including spatial locations of droplet release, droplet sizes and liquid core length. The results on primary breakup are compared to experimental results and models.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy