SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ketzer Laura) "

Sökning: WFRF:(Ketzer Laura)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Castro Araujo Moreira, Andrea Cristina, et al. (författare)
  • The first Brazilian Field Lab fully dedicated to CO2 MMV experiments : from the start-up to the initial results
  • 2014
  • Ingår i: 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12. - : Elsevier. ; , s. 6227-6238
  • Konferensbidrag (refereegranskat)abstract
    • Currently one of the main challenges in CO2 storage research is the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at geological sequestration sites that are cost effective yet help minimize risk. This perspective motivated PETROBRAS, the National Oil Major in Brazil, through its R&D investments portfolio to prioritize research projects that would contribute to decreasing the technological gap in the area. The Company's periodic surveys indicated the lack of infrastructure, as well as expertise in CO2 MMV, as two of the most critical issues at the national level. In order to bridge that gap, initial steps were taken in 2010 for the start-up and development of the first CO2 MMV Field Lab in Brazil, fully sponsored by PETROBRAS, with a long term goal of enabling the ranking of the best, most cost-effective MMV technology alternatives to be deployed at commercial large scale CCGS sites scheduled to be installed in the country. In addition to providing basic infrastructure to carry out the CO2 injection and controlled release experiments, the facility was designed for the simultaneous testing of multiple measuring methodologies. Additional benefits of the initiative are the creation of expertise and the acceleration of the know-how in MMV in Brazil, as well as the development of a deeper and more practical knowledge of CO2 dynamics and impacts in a real world, open air scenario. Under the full support of the PETROBRAS R&D Center (CENPES), through its Climate Change Mitigation Technological Program (PROCLIMA), the Brazilian Pilot CO2 MMV Lab was made possible through a joint 4-year research Project, conceived and carried out by PETROBRAS and local academia in Brazil, in close cooperation with international experts. An overview of the Project and the multiple research areas encompassed will be presented, together with the preliminary results of the first CO2 injection campaign, which took place in 2013. (c) 2014 The Authors. Published by Elsevier
  •  
2.
  • Giongo, Adriana, et al. (författare)
  • Discovery of a chemosynthesis-based community in the western South Atlantic Ocean
  • 2016
  • Ingår i: Deep Sea Research Part I. - : Elsevier. - 0967-0637 .- 1879-0119. ; 112, s. 45-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemosynthetic communities have been described from a variety of deep-sea environments across the world's oceans. They constitute very interesting biological systems in terms of their ecology, evolution and biogeography, and also given their potential as indicators of the presence and abundance of consistent hydrocarbon-based nutritional sources. Up to now such peculiar biotic assemblages have not been reported for the western South Atlantic Ocean, leaving this large region undocumented with respect to the presence, composition and history of such communities. Here we report on the presence of a chemosynthetic community off the coast of southern Brazil, in an area where high-levels of methane and the presence of gas hydrates have been detected. We performed metagenomic analyses of the microbial community present at this site, and also employed molecular approaches to identify components of its benthic fauna. We conducted phylogenetic analyses comparing the components of this assemblage to those found elsewhere in the world, which allowed a historical assessment of the structure and dynamics of these systems. Our results revealed that the microbial community at this site is quite diverse, and contains many components that are very closely related to lineages previously sampled in ecologically similar environments across the globe. Anaerobic methanotrophic (ANME) archaeal groups were found to be very abundant at this site, suggesting that methane is indeed an important source of nutrition for this community. In addition, we document the presence at this site of a vestimentiferan siboglinid polychaete and the bivalve Acharax sp., both of which are typical components of deep-sea chemosynthetic communities. The remarkable similarity in biotic composition between this area and other deep-sea communities across the world supports the interpretation that these assemblages are historically connected across the global oceans, undergoing colonization from distant sites and influenced by local ecological features that select a stereotyped suite of specifically adapted organisms. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
3.
  • Keles, Engin, et al. (författare)
  • The PEPSI exoplanet transit survey (PETS) I : Investigating the presence of a silicate atmosphere on the super-earth 55 Cnc e
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:1, s. 1544-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of exoplanets and especially their atmospheres can reveal key insights on their evolution by identifying specific atmospheric species. For such atmospheric investigations, high-resolution transmission spectroscopy has shown great success, especially for Jupiter-type planets. Towards the atmospheric characterization of smaller planets, the super-Earth exoplanet 55 Cnc e is one of the most promising terrestrial exoplanets studied to date. Here, we present a high-resolution spectroscopic transit observation of this planet, acquired with the PEPSI instrument at the Large Binocular Telescope. Assuming the presence of Earth-like crust species on the surface of 55 Cnc e, from which a possible silicate-vapor atmosphere could have originated, we search in its transmission spectrum for absorption of various atomic and ionized species such as Fe, Fe +, Ca, Ca +, Mg, and K, among others. Not finding absorption for any of the investigated species, we are able to set absorption limits with a median value of 1.9 × RP. In conclusion, we do not find evidence of a widely extended silicate envelope on this super-Earth reaching several planetary radii.
  •  
4.
  • Li, Songjun, et al. (författare)
  • Baltic Sea coastal sediment-bound eukaryotes have increased year-round activities under predicted climate change related warming
  • 2024
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.
  •  
5.
  • Medina-Silva, Renata, et al. (författare)
  • Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean
  • 2018
  • Ingår i: Journal of Marine Systems. - : Elsevier. - 0924-7963 .- 1879-1573. ; 178, s. 52-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopurnilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial hetero-geneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.
  •  
6.
  • Seidel, Laura, 1989-, et al. (författare)
  • Climate change-related warming reduces thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities
  • 2023
  • Ingår i: The ISME Journal. - : Springer Nature. - 1751-7362 .- 1751-7370. ; 17, s. 855-869
  • Tidskriftsartikel (refereegranskat)abstract
    • Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6–35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.
  •  
7.
  • Seidel, Laura, et al. (författare)
  • Long-term warming modulates diversity, vertical structuring of microbial communities, and sulfate reduction in coastal Baltic Sea sediments
  • 2023
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal waters such as those found in the Baltic Sea already suffer from anthropogenic related problems including increased algal blooming and hypoxia while ongoing and future climate change will likely worsen these effects. Microbial communities in sediments play a crucial role in the marine energy- and nutrient cycling, and how they are affected by climate change and shape the environment in the future is of great interest. The aims of this study were to investigate potential effects of prolonged warming on microbial community composition and nutrient cycling including sulfate reduction in surface (similar to 0.5 cm) to deeper sediments (similar to 24 cm). To investigate this, 16S rRNA gene amplicon sequencing was performed, and sulfate concentrations were measured and compared between sediments in a heated bay (which has been used as a cooling water outlet from a nearby nuclear power plant for approximately 50 years) and a nearby but unaffected control bay. The results showed variation in overall microbial diversity according to sediment depth and higher sulfate flux in the heated bay compared to the control bay. A difference in vertical community structure reflected increased relative abundances of sulfur oxidizing- and sulfate reducing bacteria along with a higher proportion of archaea, such as Bathyarchaeota, in the heated compared to the control bay. This was particularly evident closer to the sediment surface, indicating a compression of geochemical zones in the heated bay. These results corroborate findings in previous studies and additionally point to an amplified effect of prolonged warming deeper in the sediment, which could result in elevated concentrations of toxic compounds and greenhouse gases closer to the sediment surface.
  •  
8.
  • Seidel, Laura, et al. (författare)
  • Weakened resilience of benthic microbial communities in the face of climate change
  • 2022
  • Ingår i: ISME Communications. - : Springer Nature. - 2730-6151. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbialcommunities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The systemdemonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction.Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer tothe sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesistranscripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface,with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that mayresult in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energyproduction in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increasedtemperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures mayamplify negative effects at the base of coastal biochemical cycling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Ketzer, João Marcelo (7)
Dopson, Mark, 1970- (4)
Forsman, Anders, 196 ... (4)
Hylander, Samuel (4)
Nilsson, Emelie (2)
Eizirik, Eduardo (2)
visa fler...
Turner, Stephanie (2)
Seidel, Laura (2)
Broman, Elias, 1985- (2)
Ståhle, Magnus (2)
Giongo, Adriana (2)
Medina-Silva, Renata (2)
Utz, Laura R. P. (2)
Augustin, Adolpho H. (2)
Pinhassi, Jarone (1)
Ali, Ashfaq (1)
Scandariato, Gaetano (1)
Nascimbeni, Valerio (1)
Henning, Thomas (1)
Manoharan, Lokeshwar ... (1)
Poppenhaeger, Katja (1)
Sachpazidou, Varvara (1)
Bergström, Kristofer (1)
Gaudi, B. Scott (1)
Borsa, Francesco (1)
Sozzetti, Alessandro (1)
Lourega, Rogerio V. (1)
Rodrigues, Luiz F. (1)
de Castro Araujo Mor ... (1)
Santana Musse, Ana P ... (1)
do Rosario, Fatima (1)
Chiaranda Lazzarin, ... (1)
Cavelhao, Gabriel (1)
Chang, Hung Kiang (1)
Oliva, Andresa (1)
Landulfo, Eduardo (1)
Nakaema, Walter Mori ... (1)
Melo, Clarissa Lovat ... (1)
Bressan, Lia Weigert (1)
Constant, Marcelo Ja ... (1)
Spangler, Lee H. (1)
Dobeck, Laura M. (1)
Rahmati-Abkenar, Mah ... (1)
Wang, Ji (1)
Haag, Taiana (1)
Lopes Simao, Taiz L. (1)
Bogo, Mauricio R. (1)
Bonatto, Sandro L. (1)
Zamberlan, Priscilla ... (1)
Sbrissa, Gesiane F. (1)
visa färre...
Lärosäte
Linnéuniversitetet (7)
Stockholms universitet (3)
Lunds universitet (2)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy