SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khabarov Nikolay) "

Sökning: WFRF:(Khabarov Nikolay)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deryng, Delphine, et al. (författare)
  • Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity
  • 2016
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 6:8, s. 786-790
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising atmospheric CO2 concentrations ([CO2 ]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2 ] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2 ] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2 ] across crop and hydrological modelling communities.
  •  
2.
  • Folberth, Christian, et al. (författare)
  • Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.
  •  
3.
  • Franke, James A., et al. (författare)
  • The GGCMI Phase 2 experiment : Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:5, s. 2315-2336
  • Tidskriftsartikel (refereegranskat)abstract
    • Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen ("CTWN") for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
  •  
4.
  • Frieler, Katja, et al. (författare)
  • Understanding the weather signal in national crop-yield variability
  • 2017
  • Ingår i: Earth's Future. - 2328-4277. ; 5:6, s. 605-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
  •  
5.
  • Kraxner, Florian, et al. (författare)
  • Planning the future forests: managing for wildlife in a climate constrained landscape
  • 2017
  • Ingår i: Book of Abstracts. - 9783902762887 ; , s. 655-
  • Konferensbidrag (refereegranskat)abstract
    • Multipurpose functionality is a paradigm when it comes to forest management. This includes sustainability, resilience, stand stability, wildlife management, recreation, clean water and air, or healthy soils - to name a few. The world is aiming at a maximum global warming of 2-deg by 2100, but cumulative emissions are still rising. Higher temperatures are associated with higher risks of extreme events such as storm, flood, droughts, pests and fires etc. - and at the same time, forest systems are key for any mitigation activity to avoid such dangerous climate change. But how will a managed forest look like in the future? How can we understand the underlying dynamics and make our forests fit for the increased need for carbon storage, biomass for energy and sustainable wood and non-wood forest products like game, while maintaining biodiversity, recreational and protected areas. Moreover, we need to address all challenges on limited land and establish action from policy development allthe way to their implementation within a short time frame. Based on Sweden's forests, traditionally considered a role model for successfully bridging a multitude of demands, we present a modeling approach that should serve as a planning tool for enhancing forests' risk resilience and capacity of integrating diverse demands and different ecosystem-services. Guided by the expertise of Sweden's Environmental Protection Agency, national forest and habitat shift models from SLU and KTH will be linked with global land use models and engineering tools from IIASA. Hereby, special emphasis will be put on ecosystem services from wildlife, different scenarios of forest intensification and the optimization of biomass for bioenergy production. First estimates show that spatially explicit modeling can substantially support decision making by optimizing multipurpose use of both managed and protected areas and steering habitat shift for maintaining biodiversity and improving wildlife (game)management.
  •  
6.
  • Müller, Christoph, et al. (författare)
  • Global gridded crop model evaluation : Benchmarking, skills, deficiencies and implications
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:4, s. 1403-1422
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
  •  
7.
  • Müller, Christoph, et al. (författare)
  • Substantial Differences in Crop Yield Sensitivities Between Models Call for Functionality-Based Model Evaluation
  • 2024
  • Ingår i: Earth's Future. - 2328-4277. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analyzed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models' sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models.
  •  
8.
  • Müller, Christoph, et al. (författare)
  • The Global Gridded Crop Model Intercomparison phase 1 simulation dataset
  • 2019
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives.
  •  
9.
  • Ruane, Alex C., et al. (författare)
  • Strong regional influence of climatic forcing datasets on global crop model ensembles
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 300
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from the Agricultural Model Intercomparison and Improvement Project (AgMIP) Global Gridded Crop Model Intercomparison (GGCMI) Phase I, which aligned 14 global gridded crop models (GGCMs) and 11 climatic forcing datasets (CFDs) in order to understand how the selection of climate data affects simulated historical crop productivity of maize, wheat, rice and soybean. Results show that CFDs demonstrate mean biases and differences in the probability of extreme events, with larger uncertainty around extreme precipitation and in regions where observational data for climate and crop systems are scarce. Countries where simulations correlate highly with reported FAO national production anomalies tend to have high correlations across most CFDs, whose influence we isolate using multi-GGCM ensembles for each CFD. Correlations compare favorably with the climate signal detected in other studies, although production in many countries is not primarily climate-limited (particularly for rice). Bias-adjusted CFDs most often were among the highest model-observation correlations, although all CFDs produced the highest correlation in at least one top-producing country. Analysis of larger multi-CFD-multi-GGCM ensembles (up to 91 members) shows benefits over the use of smaller subset of models in some regions and farming systems, although bigger is not always better. Our analysis suggests that global assessments should prioritize ensembles based on multiple crop models over multiple CFDs as long as a top-performing CFD is utilized for the focus region.
  •  
10.
  • Schewe, Jacob, et al. (författare)
  • State-of-the-art global models underestimate impacts from climate extremes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy