SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khan Samiullah) "

Sökning: WFRF:(Khan Samiullah)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gulshan Kazi, Zubaida, et al. (författare)
  • Glycoside hydrolases for extraction and modification of polyphenolic antioxidants
  • 2013
  • Ingår i: Advances in enzyme biotechnology. - New Delhi : Springer India. - 9788132210931 - 9788132210948 ; , s. 9-21
  • Bokkapitel (refereegranskat)abstract
    • Antioxidants are important molecules that are widely used by humans, both as dietary supplements and as additives to different types of products. In this chapter, we review how flavonoids, a class of polyphenolic antioxidants that are often found in glycosylated forms in many natural resources, can be extracted and modified using glycoside hydrolases (GHs). Glycosylation is a fundamental enzymatic process in nature, affecting function of many types of molecules (glycans, proteins, lipids as well as other organic molecules such as the flavonoids). Possibilities to control glycosylation thus mean possibilities to control or modify the function of the molecule. For the flavonoids, glycosylation affect both the antioxidative power and solubility. In this chapter we overview results on in vitro deglycosylation and glycosylation of flavonoids by selected GHs. For optimal enzymatic performance, desired features include a correct specificity for the target, combined with high stability. Poor specificity towards a specific substituent is thus a major drawback for enzymes in particular applications. Efforts to develop the enzymes as conversion tools are reviewed.
  •  
2.
  • Khan, Bangul, et al. (författare)
  • Recent progress in thermosensitive hydrogels and their applications in drug delivery area
  • 2023
  • Ingår i: MedComm – Biomaterials and Applications. - 2769-643X .- 2769-643X. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The scientific community has widely recognized thermosensitive hydrogelsas highly biocompatible material withimmense potential in drug deliverysystems. When the temperature of these hydrogels approaches that ofhuman body, a phase change occurs, enhancing their usefulness in a rangeof medical scenarios. This review article highlighted the background ofthermosensitive hydrogels, their properties, and their applications intransdermal, oral, ophthalmic, intravaginal, nasal, rectal, cancer therapy,and cell‐loaded drug delivery systems. The literature suggests numerousadvantages of these hydrogels over conventional drug delivery systems andfind applications in various fields, such as therapeutic systems, fillingprocesses, and sustained drug delivery systems. One of their key benefits isthe ability to eliminate invasive procedures like surgery, providing anoninvasive alternative for drug administration. Moreover,theystreamlinethe formulation process for both hydrophilic and hydrophobic drugdelivery systems, simplifying the development of effective treatments.The thermosensitive hydrogels have been found to be green materials withnegligible side effects and desirable drug delivery properties. Thethermosensitive hydrogel's sustained‐release characteristics, immunogenic-ity, and biodegradability have also gained increased interest. Some of thedisadvantages of thermosensitive hydrogels include delayed temperatureresponse, weak mechanical characteristics, and poor biocompatibility,which limits their potential use in drug delivery applications.
  •  
3.
  • Lindahl, Sofia, et al. (författare)
  • Exploring the possibility of using a thermostable mutant of β-glucosidase for rapid hydrolysis of quercetin glucosides in hot water
  • 2010
  • Ingår i: Green Chemistry. - : The Royal Society of Chemistry. - 1463-9262 .- 1463-9270. ; 12:1, s. 159-168
  • Tidskriftsartikel (refereegranskat)abstract
    • The antioxidant quercetin was extracted from yellow onion waste and converted to its aglycone form by a combination of subcritical water extraction and enzymatic hydrolysis. The hydrolytic step was catalysed by a double residue (N221S, P342L) mutant of the thermostable beta-glucosidase (TnBgl1A), isolated from the thermophile Thermotoga neapolitana and cloned and produced in E. coli. The activity of wt TnBgl1A was shown to be dependent on the position of the glucosylation on the quercetin backbone, favouring hydrolysis of quercetin-4'-glucoside over quercetin-3-glucoside. The mutated variant of the enzyme harboured a mutation in the +2 sub-site (N221S) and showed increased catalytic efficiency in quercetin-3-glucoside hydrolysis and also to a certain extent hydrolysis of quercetin-4'-glucoside. The mutated enzyme was used directly in yellow onion extracts, prepared by subcritical water extraction, resulting in complete hydrolysis of the glucosylated flavonoids quercetin-3,4'-diglucoside, quercetin-4'-glucoside, quercetin-3-glucoside, isorhamnetin-4'-glucoside and isorhamnetin-3,4'-diglucoside. To complete hydrolysis within five minutes, 3 mg of TnBgl1A_N221S was used per gramme of onion (dry weight). A life cycle assessment was done to compare the environmental impact of the new method with a conventional solid-liquid extraction-and-hydrolysis method utilising aqueous methanol and hydrochloric acid. Comparison of the methods showed that the new method is preferable regarding primary energy consumption and global warming potential. Another advantage of this method is that handling of toxic chemicals (methanol and HCl) is avoided. This shows that combined subcritical water extraction/enzyme hydrolysis is both a fast and sustainable method to obtain quercetin from onion waste.
  •  
4.
  • Din, Salah Ud, et al. (författare)
  • The Purification and Characterization of a Cutinase-like Enzyme with Activity on Polyethylene Terephthalate (PET) from a Newly Isolated Bacterium Stenotrophomonas maltophilia PRS8 at a Mesophilic Temperature
  • 2023
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A polyethylene terephthalate (PET)-degrading bacterium identified as Stenotrophomonas maltophilia PRS8 was isolated from the soil of a landfill. The degradation of the PET bottle flakes and the PET prepared as a powder were assessed using live cells, an extracellular medium, or a purified cutinase-like enzyme. These treated polymers were analyzed using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The depolymerization products, identified using HPLC and LC-MS, were terephthalic acid (TPA), mono(2-hydroxyethyl)-TPA (MHET), and bis(2-hydroxyethyl)-TPA (BHET). Several physicochemical factors were optimized for a better cutinase-like enzyme production by using unique single-factor and multi-factor statistical models (the Plackett–Burman design and the central composite design software). The enzyme was purified for homogeneity through column chromatography using Sephadex G-100 resin. The molecular weight of the enzyme was approximately 58 kDa. The specific activity on para nitrophenyl butyrate was estimated at 450.58 U/mg, with a purification of 6.39 times and a yield of 48.64%. The enzyme was stable at various temperatures (30–40 °C) and pH levels (8.0–10.0). The enzyme activity was significantly improved by the surfactants (Triton X-100 and Tween-40), organic solvent (formaldehyde), and metals (NiCl2 and Na2SO4). The extracellular medium containing the cutinase-type enzyme showed a depolymerization yield of the PET powder comparable to that of Idonella skaiensis IsPETase and significantly higher than that of Humicola insolens thermostable HiCut (HiC) cutinase. This study suggests that S. maltophilia PRS8 is able to degrade PET at a mesophilic temperature and could be further explored for the sustainable management of plastic waste.
  •  
5.
  • Khan, Samiullah, et al. (författare)
  • Aglycone specificity of Thermotoga neapolitana beta-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis
  • 2011
  • Ingår i: BMC Biochemistry. - : Springer Science and Business Media LLC. - 1471-2091. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The thermostable beta-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e. g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-beta-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on beta-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as T-m by differential scanning calorimetry (101.9 degrees C for wt), was kept in the mutated variants and significant decrease (Delta T of 5 -10 degrees C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in K-M and turnover. The K-M-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 x increase for pNPGlc, while the K-M decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 x in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 x compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in K-M for this substrate. Conclusion: These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both K-M and turnover. An affinity change, leading to a decreased K-M, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.
  •  
6.
  • Kulkarni, Tejas, et al. (författare)
  • Crystal structure of β-glucosidase 1A from Thermotoga neapolitana and comparison of active site mutants for hydrolysis of flavonoid glucosides
  • 2017
  • Ingår i: Proteins: Structure, Function and Bioinformatics. - : Wiley. - 1097-0134 .- 0887-3585. ; 85:5, s. 872-884
  • Tidskriftsartikel (refereegranskat)abstract
    • The β-glucosidase TnBgl1A catalyses hydrolysis of O-linked terminal β-glycosidic bonds at the nonreducing end of glycosides/oligosaccharides. Enzymes with this specificity have potential in lignocellulose conversion (degrading cellobiose to glucose) and conversion of bioactive flavonoids (modification of glycosylation results in modulation of bioavailability). Previous work has shown TnBgl1A to hydrolyse 3, 4′ and 7 glucosylation in flavonoids, and although conversion of 3-glucosylated substrate to aglycone was low, it was improved by mutagenesis of residue N220. To further explore structure-function relationships, the crystal structure of the nucleophile mutant TnBgl1A-E349G was determined at 1.9 Å resolution, and docking studies of flavonoid substrates were made to reveal substrate interacting residues. A series of single amino acid changes were introduced in the aglycone binding region [N220(S/F), N221(S/F), F224(I), F310(L/E), and W322(A)] of the wild type. Activity screening was made on eight glucosylated flavonoids, and kinetic parameters were monitored for the flavonoid quercetin-3-glucoside (Q3), as well as for the model substrate para-nitrophenyl-β-d-glucopyranoside (pNPGlc). Substitution by Ser at N220 or N221 increased the catalytic efficiency on both pNPGlc and Q3. Residue W322 was proven important for substrate accomodation, as mutagenesis to W322A resulted in a large reduction of hydrolytic activity on 3-glucosylated flavonoids. Flavonoid glucoside hydrolysis was unaffected by mutations at positions 224 and 310. The mutations did not significantly affect thermal stability, and the variants kept an apparent unfolding temperature of 101°C. This work pinpoints positions in the aglycone region of TnBgl1A of importance for specificity on flavonoid-3-glucosides, improving the molecular understanding of activity in GH1 enzymes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy