SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yu V) "

Sökning: WFRF:(Khotyaintsev Yu V)

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carbone, F., et al. (författare)
  • Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere : Solar Orbiter observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The recently released spacecraft potential measured by the RPW instrument on board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Aims. The measurement of the solar wind's electron density, taken in June 2020, has been analysed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Methods. To study and quantify the properties of turbulence, we extracted selected intervals. We used empirical mode decomposition to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, which additionally reduced issues typical of non-stationary, short time series. The presence of waves was quantitatively determined by introducing a parameter describing the time-dependent, frequency-filtered wave power. Results. A well-defined inertial range with power-law scalng was found almost everywhere in the sample studied. However, the Kolmogorov scaling and the typical intermittency effects are only present in fraction of the samples. Other intervals have shallower spectra and more irregular intermittency, which are not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause of these anomalous fluctuations.
  •  
2.
  • Graham, Daniel B., et al. (författare)
  • Kinetic electrostatic waves and their association with current structures in the solar wind
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A variety of kinetic electrostatic and electromagnetic waves develop in the solar wind and the relationship between these waves and larger scale structures, such as current sheets and ongoing turbulence, remain a topic of investigation. Similarly, the instabilities producing ion-acoustic waves in the solar wind are still an open question. Aims. The goals of this paper are to investigate electrostatic Langmuir and ion-acoustic waves in the solar wind at 0.5 AU and determine whether current sheets and associated streaming instabilities can produce the observed waves. The relationship between these waves and currents observed in the solar wind is investigated statistically. Methods. Solar Orbiter's Radio and Plasma Waves instrument suite provides high-resolution snapshots of the fluctuating electric field. The Low Frequency Receiver resolves the waveforms of ion-acoustic waves and the Time Domain Sampler resolves the waveforms of both ion-acoustic and Langmuir waves. Using these waveform data, we determine when these waves are observed in relation to current structures in the solar wind, estimated from the background magnetic field. Results. Langmuir and ion-acoustic waves are frequently observed in the solar wind. Ion-acoustic waves are observed about 1% of the time at 0.5 AU. The waves are more likely to be observed in regions of enhanced currents. However, the waves typically do not occur at current structures themselves. The observed currents in the solar wind are too small to drive instability by the relative drift between single ion and electron populations. When multi-component ion or electron distributions are present, the observed currents may be sufficient for instabilities to occur. Ion beams are the most plausible source of ion-acoustic waves in the solar wind. The spacecraft potential is confirmed to be a reliable probe of the background electron density when comparing the peak frequencies of Langmuir waves with the plasma frequency calculated from the spacecraft potential.
  •  
3.
  • Khotyaintsev, Yu, V, et al. (författare)
  • Density fluctuations associated with turbulence and waves First observations by Solar Orbiter
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim of this work is to demonstrate that the probe-to-spacecraft potential measured by RPW on Solar Orbiter can be used to derive the plasma (electron) density measurement, which exhibits both a high temporal resolution and a high level of accuracy. To investigate the physical nature of the solar wind turbulence and waves, we analyze the density and magnetic field fluctuations around the proton cyclotron frequency observed by Solar Orbiter during the first perihelion encounter (similar to 0.5AU away from the Sun). Methods. We used the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study the fields and density fluctuations in the solar wind. In particular, we used the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations, and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. Results. We find that the density fluctuations are 180 degrees out of phase (anticorrelated) with the compressible component of magnetic fluctuations for intervals of turbulence, whereas they are in phase for the circular-polarized waves. We analyze, in detail, two specific events with a simultaneous presence of left- and right-handed waves at di fferent frequencies. We compare the observed wave properties to a prediction of the three-fluid (electrons, protons, and alphas) model. We find a limit on the observed wavenumbers, 10(-6) < k < 7 > 10(-6) m(-1), which corresponds to a wavelength of 7 x 10(6) > lambda > 10(6) m. We conclude that it is most likely that both the leftand right-handed waves correspond to the low-wavenumber part (close to the cut-o ff at Omega(cHe++)) of the proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range Omega(cHe++) < omega < Omega(cp)) waves propagating in the outwards and inwards directions, respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
  •  
4.
  • Steinvall, Konrad, et al. (författare)
  • Solar wind current sheets and deHoffmann-Teller analysis First results from Solar Orbiter's DC electric field measurements
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter's DC electric and magnetic field data to estimate the solar wind speed. Methods. We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, L-eff of the E-field probes. We then used the HT method to estimate the speed of the solar wind. Results. Using the HT method, we find that the observed variations in E-y are often in excellent agreement with the variations in the magnetic field. The magnitude of E-y, however, is uncertain due to the fact that the L-eff depends on the plasma environment. Here, we derive an empirical model relating L-eff to the Debye length, which we can use to improve the estimate of E-y and, consequently, the estimated solar wind speed. Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter's magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
  •  
5.
  • Soucek, J., et al. (författare)
  • Solar Orbiter Radio and Plasma Waves - Time Domain Sampler : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument on board Solar Orbiter has been operating nearly continuously since the launch in February 2020. The Time Domain Sampler (TDS) receiver of the RPW instrument is dedicated to waveform measurements of plasma waves and dust impact signatures in an intermediate frequency range from 0.2 to 200 kHz. Aims. This article presents the first data from the RPW-TDS receiver and discusses the in-flight performance of the instrument and, in particular, the on-board wave and dust detection algorithm. We present the TDS data products and its scientific operation. We demonstrate the content of the dataset on several examples. In particular, we study the distribution of solar Langmuir waves in the first year of observations and one Type III burst event. Methods. The on-board detection algorithm is described in detail in this article and classifies the observed waveform snapshots, identifying plasma waves and dust impacts based on the ratio of their maximum amplitude to their median and on the spectral bandwidth. The algorithm allows TDS to downlink the most scientifically relevant waveforms and to perform an on-board statistical characterization of the processed data. Results. The detection algorithm of TDS is shown to perform very well in its detection of plasma waves and dust impacts with a high accuracy. The initial analysis of statistical data returned by TDS shows that sporadic Langmuir waves that are not associated with Type III events are routinely observed in the inner heliosphere, with a clear increase in occurrence rate closer to the Sun. We also present an example of RPW observations during an encounter of the source region of a Type III burst, which exploits the on-board calculated histograms data.
  •  
6.
  • Vecchio, A., et al. (författare)
  • Solar Orbiter/RPW antenna calibration in the radio domain and its application to type III burst observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656, s. A33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In order to allow for a comparison with the measurements from other antenna systems, the voltage power spectral density measured by the Radio and Plasma waves receiver (RPW) on board Solar Orbiter needs to be converted into physical quantities that depend on the intrinsic properties of the radiation itself (e.g., the brightness of the source). Aims. The main goal of this study is to perform a calibration of the RPW dipole antenna system that allows for the conversion of the voltage power spectral density measured at the receiver's input into the incoming flux density. Methods. We used space observations from the Thermal Noise Receiver (TNR) and the High Frequency Receiver (HFR) to perform the calibration of the RPW dipole antenna system. Observations of type III bursts by the Wind spacecraft are used to obtain a reference radio flux density for cross-calibrating the RPW dipole antennas. The analysis of a large sample of HFR observations (over about ten months), carried out jointly with an analysis of TNR-HFR data and prior to the antennas' deployment, allowed us to estimate the reference system noise of the TNR-HFR receivers. Results. We obtained the effective length, l(eff), of the RPW dipoles and the reference system noise of TNR-HFR in space, where the antennas and pre-amplifiers are embedded in the solar wind plasma. The obtained l(eff) values are in agreement with the simulation and measurements performed on the ground. By investigating the radio flux intensities of 35 type III bursts simultaneously observed by Wind and Solar Orbiter, we found that while the scaling of the decay time as a function of the frequency is the same for the Waves and RPW instruments, their median values are higher for the former. This provides the first observational evidence that Type III radio waves still undergo density scattering, even when they propagate from the source, in a medium with a plasma frequency that is well below their own emission frequency.
  •  
7.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
8.
  • Dimmock, A. P., et al. (författare)
  • Analysis of multiscale structures at the quasi-perpendicular Venus bow shock Results from Solar Orbiter's first Venus flyby
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter is a European Space Agency mission with a suite of in situ and remote sensing instruments to investigate the physical processes across the inner heliosphere. During the mission, the spacecraft is expected to perform multiple Venus gravity assist maneuvers while providing measurements of the Venusian plasma environment. The first of these occurred on 27 December 2020, in which the spacecraft measured the regions such as the distant and near Venus magnetotail, magnetosheath, and bow shock. Aims. This study aims to investigate the outbound Venus bow shock crossing measured by Solar Orbiter during the first flyby. We study the complex features of the bow shock traversal in which multiple large amplitude magnetic field and density structures were observed as well as higher frequency waves. Our aim is to understand the physical mechanisms responsible for these high amplitude structures, characterize the higher frequency waves, determine the source of the waves, and put these results into context with terrestrial bow shock observations. Methods. High cadence magnetic field, electric field, and electron density measurements were employed to characterize the properties of the large amplitude structures and identify the relevant physical process. Minimum variance analysis, theoretical shock descriptions, coherency analysis, and singular value decomposition were used to study the properties of the higher frequency waves to compare and identify the wave mode. Results. The non-planar features of the bow shock are consistent with shock rippling and/or large amplitude whistler waves. Higher frequency waves are identified as whistler-mode waves, but their properties across the shock imply they may be generated by electron beams and temperature anisotropies. Conclusions. The Venus bow shock at a moderately high Mach number (similar to 5) in the quasi-perpendicular regime exhibits complex features similar to the Earth's bow shock at comparable Mach numbers. The study highlights the need to be able to distinguish between large amplitude waves and spatial structures such as shock rippling. The simultaneous high frequency observations also demonstrate the complex nature of energy dissipation at the shock and the important question of understanding cross-scale coupling in these complex regions. These observations will be important to interpreting future planetary missions and additional gravity assist maneuvers.
  •  
9.
  • Lotekar, A., et al. (författare)
  • Multisatellite MMS Analysis of Electron Holes in the Earth's Magnetotail : Origin, Properties, Velocity Gap, and Transverse Instability
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical analysis of more than 2,400 electrostatic solitary waves interpreted as electron holes (EH) measured aboard at least three Magnetospheric Multiscale (MMS) spacecraft in the Earth's magnetotail. The velocities of EHs are estimated using the multispacecraft interferometry. The EH velocities in the plasma rest frame are in the range from just a few km/s, which is much smaller than ion thermal velocity V-Ti, up to 20,000 km/s, which is comparable to electron thermal velocity V-Te. We argue that fast EHs with velocities larger than about 0.1V(Te) are produced by bump-on-tail instabilities, while slow EHs with velocities below about 0.05V(Te) can be produced by warm bistream and, probably, Buneman-type instabilities. We show that typically fast and slow EHs do not coexist, indicating that the instabilities producing EHs of different types operate independently. We have identified a gap in the distribution of EH velocities between V-Ti and 2V(Ti), which is considered to be the evidence for self-acceleration (Zhou & Hutchinson, 2018) or ion Landau damping of EHs. Parallel spatial scales and amplitudes of EHs are typically between lambda(D) and 10 lambda(D) and between 10(-3) T-e and 0.1 T-e, respectively. We show that electrostatic potential amplitudes of EHs are below the threshold of the transverse instability and highly likely restricted by the nonlinear saturation criterion of electron streaming instabilities seeding electron hole formation: e Phi(0)less than or similar to me pi(2)d(parallel to)(2), where pi = min(gamma, 1.5 omega(ce)), where gamma is the increment of instabilities seeding EH formation, while pi(ce) is electron cyclotron frequency. The implications of the presented results are discussed.
  •  
10.
  • Wilder, F. D., et al. (författare)
  • Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5909-5917
  • Tidskriftsartikel (refereegranskat)abstract
    • We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy