SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiefer M) "

Sökning: WFRF:(Kiefer M)

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
6.
  •  
7.
  • Rosendahl, J, et al. (författare)
  • Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis
  • 2018
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 67:10, s. 1855-1863
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus.Design1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used.ResultsWe replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk.ConclusionAn inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.
  •  
8.
  • Szabo, Gy M., et al. (författare)
  • Transit timing variations of AU Microscopii b and c*
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report large-amplitude transit timing variations (TTVs) for AU Microcopii b and c as detected in combined TESS (2018, 2020) and CHEOPS (2020, 2021) transit observations. AU Mic is a young planetary system with a debris disk and two transiting warm Neptunes. A TTV on the order of several minutes was previously reported for AU Mic b, which was suggested to be an outcome of mutual perturbations between the planets in the system. In 2021, we observed AU Mic b (five transits) and c (three transits) with the CHEOPS space telescope to follow-up the TTV of AU Mic b and possibly detect a TTV for AU Mic c. When analyzing TESS and CHEOPS 2020-2021 measurements together, we find that a prominent TTV emerges with a full span of >= 23 min between the two TTV extrema. Assuming that the period change results from a periodic process -such as mutual perturbations- we demonstrate that the times of transits in the summer of 2022 are expected to be 30-85 min later than predicted by the available linear ephemeris.
  •  
9.
  • Davies, M.B., et al. (författare)
  • Glancing through the debris disk: Photometric analysis of de Boo with CHEOPS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. DE Boo is a unique system, with an edge-on view through the debris disk around the star. The disk, which is analogous to the Kuiper belt in the Solar System, was reported to extend from 74 to 84 AU from the central star. The high photometric precision of the Characterising Exoplanet Satellite (CHEOPS) provided an exceptional opportunity to observe small variations in the light curve due to transiting material in the disk. This is a unique chance to investigate processes in the debris disk. Methods. Photometric observations of DE Boo of a total of four days were carried out with CHEOPS. Photometric variations due to spots on the stellar surface were subtracted from the light curves by applying a two-spot model and a fourth-order polynomial. The photometric observations were accompanied by spectroscopic measurements with the 1m RCC telescope at Piszkésteto and with the SOPHIE spectrograph in order to refine the astrophysical parameters of DE Boo. Results. We present a detailed analysis of the photometric observation of DE Boo. We report the presence of nonperiodic transient features in the residual light curves with a transit duration of 0.3-0.8 days. We calculated the maximum distance of the material responsible for these variations to be 2.47 AU from the central star, much closer than most of the mass of the debris disk. Furthermore, we report the first observation of flaring events in this system. Conclusions. We interpreted the transient features as the result of scattering in an inner debris disk around DE Boo. The processes responsible for these variations were investigated in the context of interactions between planetesimals in the system.
  •  
10.
  • Osborn, H. P., et al. (författare)
  • Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3069-3089
  • Tidskriftsartikel (refereegranskat)abstract
    • HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R (HIP 9618 b) and 3.343 ± 0.039 R (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M for HIP 9618 b, which, according to our interior structure models, corresponds to a 6.8 ± 1.4 per cent gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion (0.08+−000512M☉) orbiting at 26.0+−111900 au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
Typ av publikation
tidskriftsartikel (66)
konferensbidrag (3)
forskningsöversikt (3)
annan publikation (1)
Typ av innehåll
refereegranskat (68)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Kiefer, M. (22)
Stiller, G. P. (11)
Walker, K. A. (10)
Linden, A (9)
Murtagh, Donal, 1959 (9)
Davies, M. B. (8)
visa fler...
von Clarmann, T. (8)
Kellmann, S. (8)
Eriksson, Patrick, 1 ... (7)
Glatthor, N. (7)
Thomas, N (6)
Rietschel, M (6)
Lendl, M. (6)
Frank, J (6)
Urban, Joachim, 1964 (6)
Khosrawi, F. (6)
Grabowski, U. (6)
Li, Y. (5)
Schneider, M. (5)
Ongena, J (5)
Ehrenreich, D. (5)
Milz, Mathias (5)
Barros, S.C.C. (5)
Fortier, A. (5)
Demory, B.O. (5)
Wilson, T.G. (5)
Alibert, Y. (5)
Alonso, R. (5)
Bárczy, T. (5)
Baumjohann, W. (5)
Beck, T. (5)
Benz, W. (5)
Bonfils, X. (5)
Broeg, C. (5)
Charnoz, S. (5)
Deleuil, M. (5)
Delrez, L. (5)
Fossati, L. (5)
Fridlund, Malcolm, 1 ... (5)
Gandolfi, D. (5)
Gudel, M. (5)
Hoyer, S. (5)
Kiss, L. L. (5)
Laskar, J. (5)
Magrin, D. (5)
Simon, A.E. (5)
Anglada, G. (5)
Jones, N (5)
Mann, K (5)
Noël, S (5)
visa färre...
Lärosäte
Chalmers tekniska högskola (27)
Karolinska Institutet (23)
Uppsala universitet (13)
Stockholms universitet (9)
Lunds universitet (8)
Luleå tekniska universitet (5)
visa fler...
Kungliga Tekniska Högskolan (4)
Göteborgs universitet (3)
Linköpings universitet (3)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (73)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (39)
Teknik (13)
Medicin och hälsovetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy