SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kildegaard K. R.) "

Sökning: WFRF:(Kildegaard K. R.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borodina, I., et al. (författare)
  • Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine
  • 2015
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 27, s. 57-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharolnyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the beta-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of beta-alanine and its subsequent conversion into 3HP using a novel beta-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7 +/- 0.3 g L-1 with a 0.14 +/- 0.0 C-mol C-mol(-1) yield on glucose in 80 h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production.
  •  
2.
  • Kildegaard, K. R., et al. (författare)
  • Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In the future, oil-and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Results: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacsL641P. Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 +/- 0.4 g L-1 3HP with a yield of 13 % C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by C-13 metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. Conclusions: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.
  •  
3.
  • Maury, J., et al. (författare)
  • EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the beta-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.
  •  
4.
  • Jensen, N. B., et al. (författare)
  • EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
  • 2014
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 14:2, s. 238-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log(10) mean +/- 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out.
  •  
5.
  • Kildegaard, K. R., et al. (författare)
  • Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae
  • 2015
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 2, s. 132-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP), a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17g 3HPL-1 in 120hours with an overall yield of 29±1%Cmol 3HPCmol-1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose.
  •  
6.
  • Li, M., et al. (författare)
  • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
  • 2015
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 32, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Resveratrol is a natural antioxidant compound, used as food supplement and cosmetic ingredient. Microbial production of resveratrol has until now been achieved by supplementation of expensive substrates, p-coumaric acid or aromatic amino acids. Here we engineered the yeast Saccharomyces cerevisiae to produce resveratrol directly from glucose or ethanol via tyrosine intermediate. First we introduced the biosynthetic pathway, consisting of tyrosine ammonia-lyase from Herpetosiphon aurantiacus, 4-coumaryl-CoA ligase from Arabidopsis thaliana and resveratrol synthase from Vitis vinifera, and obtained 2.73±0.05mgL-1 resveratrol from glucose. Then we over-expressed feedback-insensitive alleles of ARO4 encoding 3-deoxy-D-arabino-heptulosonate-7-phosphate and ARO7 encoding chorismate mutase, resulting in production of 4.85±0.31mgL-1 resveratrol from glucose as the sole carbon source. Next we improved the supply of the precursor malonyl-CoA by over-expressing a post-translational de-regulated version of the acetyl-CoA carboxylase encoding gene ACC1; this strategy further increased resveratrol production to 6.39±0.03mgL-1. Subsequently, we improved the strain by performing multiple-integration of pathway genes resulting in resveratrol production of 235.57±7.00mgL-1. Finally, fed-batch fermentation of the final strain with glucose or ethanol as carbon source resulted in a resveratrol titer of 415.65 and 531.41mgL-1, respectively.
  •  
7.
  •  
8.
  • Regueira, T. B., et al. (författare)
  • Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum
  • 2011
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 1098-5336 .- 0099-2240. ; 77:9, s. 3035-3043
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene cluster in the genome of Penicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway of P. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering.
  •  
9.
  • Rodriguez, A., et al. (författare)
  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
  • 2015
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 31, s. 181-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First, we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93±0.26gL-1 was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4K229L, chorismate mutase ARO7G141S and E. coli shikimate kinase II (aroL) in δpdc5δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced by yeast. The developed S. cerevisiae strain represents an attractive platform host for production of p-coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy