SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kilic Nuzhet I.) "

Search: WFRF:(Kilic Nuzhet I.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kilic, Nuzhet I., et al. (author)
  • Two-Photon Polymerization Printing with High Metal Nanoparticle Loading
  • 2023
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:42, s. 49794-49804
  • Journal article (peer-reviewed)abstract
    • Two-photon polymerization (2PP) is an efficient technique to achieve high-resolution, three-dimensional (3D)-printed complex structures. However, it is restricted to photocurable monomer combinations, thus presenting constraints when aiming at attaining functionally active resist formulations and structures. In this context, metal nanoparticle (NP) integration as an additive can enable functionality and pave the way to more dedicated applications. Challenges lay on the maximum NP concentrations that can be incorporated into photocurable resist formulations due to the laser-triggered interactions, which primarily originate from laser scattering and absorption, as well as the limited dispersibility threshold. In this study, we propose an approach to address these two constraints by integrating metallic Rh NPs formed ex situ, purposely designed for this scope. The absence of surface plasmon resonance (SPR) within the visible and near-infrared spectra, coupled with the limited absorption value measured at the laser operating wavelength (780 nm), significantly limits the laser-induced interactions. Moreover, the dispersibility threshold is increased by engineering the NP surface to be compatible with the photocurable resin, permitting us to achieve concentrations of up to 2 wt %, which, to our knowledge, is significantly higher than the previously reported limit (or threshold) for embedded metal NPs. Another distinctive advantage of employing Rh NPs is their role as promising contrast agents for X-ray fluorescence (XRF) bioimaging. We demonstrated the presence of Rh NPs within the whole 2PP-printed structure and emphasized the potential use of NP-loaded 3D-printed nanostructures for medical devices.
  •  
2.
  • Saladino, Giovanni Marco, et al. (author)
  • Functional Coatings for X-ray Fluorescent Nanoparticles
  • 2022
  • In: Proceedings of the 6th International Conference on Theoretical and Applied Nanoscience and Nanotechnology, TANN 2022. - : Avestia Publishing.
  • Conference paper (peer-reviewed)abstract
    • In recent years, the design and synthesis of bio-compatible coatings leading to hybrid nanoparticles (NPs) as the contrast agents have gained substantial relevance. Furthermore, the addition of several functionalities for bio-imaging applications represents a key step for non-invasive bio-diagnostics. In this context, we design and utilize hybrid nanostructures for X-ray fluorescence computed tomography (XFCT). The combination of a ceramic or metallic core–based on MoO2, Rh or Ru–with a protective shell allows the generation of bio-compatible nanohybrids for dual mode bio-imaging, where the core NPs constitute the X-ray fluorescence (XRF) contrast agents [1]–[3]. Core NPs are synthesized via polyol, hydrothermal or microwave-assisted hydrothermal methods, yielding uniform shape and high dispersibility in aqueous media. Different approaches have been pursued for the fabrication of a bio-compatible shell coating. A modified sol-gel based silica coating process, doped with a commercial fluorophore (Cy5.5), was developed and shown to be applicable to both ceramic and metallic NPs [4], forming core-shell NPs with both optical and X-ray fluorescence properties. Alternatively, carbon quantum dots (CQDs) were synthesized via citrate pyrolysis using microwave-assisted hydrothermal method, exhibiting uniform size distribution (1.6±0.4 nm) and excitation-independent emission (440 nm). Conjugation of these CQDs, via cross-linking, with Rh NPs led to excitation-independent hybrid NPs, with a red-shifted emission wavelength (520 nm), attributed to the reduction of pyrrolic nitrogen on CQDs [5]. These hybrid NPs exhibit improved in vitro biocompatibility in comparison with bare XRF contrast agents. Furthermore, the optical fluorescence–provided by Cy5.5 or CQDs–allows the localization of the NPs in the intracellular environment while the XRF signal from the core NPs is utilized for XFCT, in small animals, leading to both a microscopic and macroscopic bio-imaging contrast agent.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view