SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kilner Philip J) "

Sökning: WFRF:(Kilner Philip J)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dyverfeldt, Petter, et al. (författare)
  • 4D flow cardiovascular magnetic resonance consensus statement
  • 2015
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BioMed Central / Informa Healthcare. - 1097-6647 .- 1532-429X. ; 17:72
  • Forskningsöversikt (refereegranskat)abstract
    • Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5x1.5x1.5 - 3x3x3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.
  •  
2.
  • Hofman, Mark B.M., et al. (författare)
  • In-vivo validation of interpolation-based phase offset correction in cardiovascular magnetic resonance flow quantification : A multi-vendor, multi-center study
  • 2019
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup. Methods: Data from six 1.5 T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated. Results: A total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was - 0.2 ± 0.6 cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6 cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was - 0.4 ± 1.5 cm/s, which resulted in a - 5 ± 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 ± 0.5 cm/s and 0 ± 5% error in cardiac output. Conclusions: This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans. Trial registration: The study was registered in The Netherlands National Trial Register (NTR) under TC 4865. Registered 19 September 2014. Retrospectively registered.
  •  
3.
  • Rolf, Marijn P, et al. (författare)
  • Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance volume flow quantification - A multi-vendor study
  • 2011
  • Ingår i: JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE. - : Taylor and Francis / BioMed Central. - 1097-6647. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. Methods: Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. Results: The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. Conclusions: This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction.
  •  
4.
  • Gatehouse, Peter D., et al. (författare)
  • A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors
  • 2012
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 14:72
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. Methods: This study assessed the temporal stability of the background offset on 3 different manufacturers' scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. Results: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. Conclusions: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data.
  •  
5.
  •  
6.
  • Babu-Narayan, Sonya V, et al. (författare)
  • Dyssynchrony and electromechanical delay are associated with focal fibrosis in the systemic right ventricle - Insights from echocardiography.
  • 2016
  • Ingår i: International Journal of Cardiology. - : Elsevier BV. - 0167-5273 .- 1874-1754. ; 220, s. 382-388
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Systemic right ventricular (RV) dysfunction and sudden cardiac death remain problematic late after Mustard operation for transposition of the great arteries. The exact mechanism for that relationship is likely to be multifactorial including myocardial fibrosis. Doppler echocardiography gives further insights into the role of fibrosis shown by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in late morbidity.METHODS AND RESULTS: Twenty-two consecutive patients, mean age 28±8years, were studied with 2D echocardiography, and also assessed by LGE CMR. The presence of LGE in 13/22 patients (59%) was related to delayed septal shortening and lengthening (P=0.002 &P=0.049), prolonged systemic RV isovolumic contraction time (P=0.024) and reduced systemic RV free wall and septal excursion (P=0.027 &P=0.005). The systemic RV total isovolumic time was prolonged but not related to extent of LGE. LGE extent was related to markers of electromechanical delay and dyssynchrony (delayed onset of RV free wall shortening and lengthening; r=0.73 &P=0.004 and r=0.62 &P=0.041, respectively, and QRS duration r=0.68, P<0.01) and was inversely related to systolic RV free wall shortening velocity (r=-0.59 &P=0.042). The presence of LGE was also related to lower exercise capacity, ≥mild tricuspid regurgitation and more arrhythmia (P=0.008, P=0.014 and P=0.040). RV free wall excursion and systolic tissue Doppler velocity were related to CMR derived RV ejection fraction (r=0.51, P=0.015, and r=0.77, P=<0.001, respectively).CONCLUSION: Post Mustard repair, myocardial fibrosis is related to dyssynchrony, RV long axis dysfunction and tricuspid regurgitation. Echocardiographic measurements of systemic RV function can be confidently used in serial follow-up following Mustard operation.
  •  
7.
  •  
8.
  • Johansson, Bengt, et al. (författare)
  • The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping.
  • 2009
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647 .- 1532-429X. ; 11:1, s. 1-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pulmonary regurgitation is a common and clinically important residual lesion after repair of tetralogy of Fallot. Cardiovascular magnetic resonance (CMR) phase contrast velocity mapping is widely used for measurement of pulmonary regurgitant fraction. Breath-hold acquisitions, usually acquired during held expiration, are more convenient than the non-breath-hold approach, but we hypothesized that breath-holding might affect the amount of pulmonary regurgitation. METHODS: Forty-three adult patients with a previous repair of tetralogy of Fallot and residual pulmonary regurgitation were investigated with CMR. In each, pulmonary regurgitant fraction was measured from velocity maps transecting the pulmonary trunk, acquired during held expiration, held inspiration, by non-breath-hold acquisition, and also from the difference of right and left ventricular stroke volume measurements. RESULTS: Pulmonary regurgitant fraction was lower when measured by velocity mapping in held expiration compared with held inspiration, non-breath-hold or stroke volume difference (30.8 vs. 37.0, 35.6, 35.4%, p = 0.00017, 0.0035, 0.026). The regurgitant volume was lower in held expiration than in held inspiration (41.9 vs. 48.3, p = 0.0018). Pulmonary forward flow volume was larger during held expiration than during non-breath-hold (132 vs. 124 ml, p = 0.0024). CONCLUSION: Pulmonary regurgitant fraction was significantly lower in held expiration compared with held inspiration, free breathing and stroke volume difference. Altered airway pressure could be a contributory factor. This information is relevant if breath-hold acquisition is to be substituted for non-breath-hold in the investigation of patients with a view to re-intervention.
  •  
9.
  • Markl, Michael, et al. (författare)
  • Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance
  • 2011
  • Ingår i: JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE. - : Taylor andamp; Francis / BioMed Central. - 1097-6647. ; 13:7
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated. Methods: Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification. Applications: Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thromboembolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters. Conclusions: Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.
  •  
10.
  • Sengupta, Partho P, et al. (författare)
  • Emerging Trends in CV Flow Visualization
  • 2012
  • Ingår i: JACC Cardiovascular Imaging. - : Elsevier. - 1936-878X .- 1876-7591. ; 5:3, s. 305-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood flow patterns are closely linked to the morphology and function of the cardiovascular system. These patterns reflect the exceptional adaptability of the cardiovascular system to maintain normal blood circulation under a wide range of workloads. Accurate retrieval and display of flow-related information remains a challenge because of the processes involved in mapping the flow velocity fields within specific chambers of the heart. We review the potentials and pitfalls of current approaches for blood flow visualization, with an emphasis on acquisition, display, and analysis of multidirectional flow. This document is divided into 3 sections. First, we provide a descriptive outline of the relevant concepts in cardiac fluid mechanics, including the emergence of rotation in flow and the variables that delineate vortical structures. Second, we elaborate on the main methods developed to image and visualize multidirectional cardiovascular flow, which are mainly based on cardiac magnetic resonance, ultrasound Doppler, and contrast particle imaging velocimetry, with recommendations for developing dedicated imaging protocols. Finally, we discuss the potential clinical applications and technical challenges with suggestions for further investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy