SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kim Minkyu) "

Sökning: WFRF:(Kim Minkyu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Eva, et al. (författare)
  • Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)
  • 2009
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 43:2, s. 490-498
  • Tidskriftsartikel (refereegranskat)abstract
    • This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions, Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L(-1)), temperature (10 and 2S degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.
  •  
2.
  • Martin, Rachel, et al. (författare)
  • Isothermal Reduction of IrO2 (110) Films by Methane Investigated Using In Situ X-ray Photoelectron Spectroscopy
  • 2021
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 11:9, s. 5004-5016
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous exposure to methane causes IrO2 (110) films on Ir(100) to undergo extensive reduction at temperatures from 500 to 650 K. Measurements using in situ X-ray photoelectron spectroscopy (XPS) confirm that CH4 oxidation on IrO2 (110) converts so-called bridging oxygen atoms (O-br) at the surface to HObr groups while concurrently removing oxygen from the oxide film. Reduction of the IrO2 (110) film by methane is mildly activated as evidenced by an increase in the initial reduction rate as the temperature is increased from 500 to 650 K. The XPS results show that subsurface oxygen efficiently replaces O-br atoms at the IrO2 (110) surface during CH4 oxidation, even after the reduction of multiple layers of the oxide film, and that metallic Ir gradually forms at the surface as well. The isothermal rate of IrO2 (110) reduction by methane decreases continuously as metallic Ir replaces surface IrO2 (110) domains, demonstrating that IrO2 (110) is the active phase for CH4 oxidation under the conditions studied. A key finding is that the replacement of O-br atoms with oxygen from the subsurface is efficient enough to preserve IrO2 (110) domains at the surface and enable CH4 to reduce the similar to 10-layer IrO2 (110) films nearly to completion. In agreement with these observations, density functional theory calculations predict that oxygen atoms in the subsurface layer can replace O-br atoms at rates that are comparable to or higher than the rates at which O-br atoms are abstracted during CH4 oxidation. The efficacy with which oxygen in the bulk reservoir replenishes surface oxygen atoms has implications for understanding and modeling catalytic oxidation processes promoted by IrO2 (110).
  •  
3.
  • Mehar, Vikram, et al. (författare)
  • Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100)
  • 2018
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 8:9, s. 8553-8567
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the intrinsic reactivity of CO on single-layer and multilayer PdO(101) grown on Pd(100) using temperature-programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) experiments, as well as density functional theory (DFT) calculations. We find that CO binds more strongly on multilayer than single-layer PdO(101) (∼119 kJ/mol vs 43 kJ/mol), and that CO oxidizes negligibly on single-layer PdO(101), whereas nearly 90% of a saturated layer of CO oxidizes on multilayer PdO(101) during TPRS experiments. RAIRS further shows that CO molecules adsorb on both bridge-Pdcusand atop-Pdcussites (coordinatively unsaturated Pd sites) of single-layer PdO(101)/Pd(100), while CO binds exclusively on atop-Pdcussites of multilayer PdO(101). The DFT calculations reproduce the much stronger binding of CO on multilayer PdO(101), as well as the observed binding site preferences, and reveal that the stronger binding is entirely responsible for the higher CO oxidation activity of multilayer PdO(101)/Pd(100). We show that the O atom below the Pdcussite, present only on multilayer PdO(101), modifies the electronic states of the Pdcusatom in a way that enhances the CO-Pdcusbonding. Lastly, we show that a precursor-mediated kinetic model, with energetics determined from the present study, predicts that the intrinsic CO oxidation rates achieved on both single-layer and multilayer PdO(101)/Pd(100) can be expected to exceed the gaseous CO diffusion rate to the surface during steady-state CO oxidation at elevated pressures, even though the intrinsic reaction rates are 4-5 orders of magnitude lower on single-layer PdO(101)/Pd(100) than on multilayer PdO(101)/Pd(100).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy