SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kim Woonghee) "

Sökning: WFRF:(Kim Woonghee)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, C., et al. (författare)
  • The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease
  • 2020
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.
  •  
2.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 8:17
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
  •  
3.
  • Ashraf, Sajda, et al. (författare)
  • Synthesis, spectroscopic characterization, DFT and molecular docking of N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl) naphthalene-1-sulfonamide derivatives
  • 2024
  • Ingår i: Journal of Molecular Structure. - : Elsevier B.V.. - 0022-2860 .- 1872-8014. ; 1312
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver pyruvate kinase (PKL) is a key player in controlling metabolic pathways and ATP production within the liver's glycolysis pathway. Since PKL modulators have been identified as a promising target for treating hepatocellular carcinoma (HCC) and non-alcoholic fatty liver disease (NAFLD), our research is centered on the development and synthesis of derivatives of N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl) naphthalene-1-sulfonamide with the aim of modulating PLK. To improve PKL specificity, we used structural analysis and modeling as a guide. Notably, compound PKL-05 became the series' only active ingredient. DFT, Hirshfeld surface analysis, and molecular docking were used in our study to thoroughly examine the connection between compound structures and their computational functions. The global hardness and softness energy values, as well as the HOMO-LUMO energy gap value, were computed in order to forecast the chemical reactivity of this newly synthesized molecule. These energy values indicate that this molecule tends to be chemically stable and has little chemical reactivity. The results demonstrated a strong agreement between theoretical forecasts and experimental findings. In particular, PKL-05 exhibits encouraging traits that establish it as a useful starting point for additional research in the search for innovative PKL modulators to tackle the treatment issues associated with NAFLD and HCC.
  •  
4.
  • Battisti, Umberto Maria, et al. (författare)
  • Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitors of Liver Pyruvate Kinase
  • 2023
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver pyruvate kinase (PKL) has recently emerged as a new target for non-alcoholic fatty liver disease (NAFLD), and inhibitors of this enzyme could represent a new therapeutic option. However, this breakthrough is complicated by selectivity issues since pyruvate kinase exists in four different isoforms. In this work, we report that ellagic acid (EA) and its derivatives, present in numerous fruits and vegetables, can inhibit PKL potently and selectively. Several polyphenolic analogues of EA were synthesized and tested to identify the chemical features responsible for the desired activity. Molecular modelling studies suggested that this inhibition is related to the stabilization of the PKL inactive state. This unique inhibition mechanism could potentially herald the development of new therapeutics for NAFLD.
  •  
5.
  • Battisti, Umberto Maria, et al. (författare)
  • Exploration of Novel Urolithin C Derivatives as Non-Competitive Inhibitors of Liver Pyruvate Kinase
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI AG. - 1424-8247. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The inhibition of liver pyruvate kinase could be beneficial to halt or reverse non-alcoholic fatty liver disease (NAFLD), a progressive accumulation of fat in the liver that can lead eventually to cirrhosis. Recently, urolithin C has been reported as a new scaffold for the development of allosteric inhibitors of liver pyruvate kinase (PKL). In this work, a comprehensive structure-activity analysis of urolithin C was carried out. More than 50 analogues were synthesized and tested regarding the chemical features responsible for the desired activity. These data could pave the way to the development of more potent and selective PKL allosteric inhibitors.
  •  
6.
  • Battisti, U. M., et al. (författare)
  • Serendipitous Identification of a Covalent Activator of Liver Pyruvate Kinase
  • 2023
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227 .- 1439-7633. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC50=0.29 μM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators. 
  •  
7.
  • Bayraktar, Abdulahad, et al. (författare)
  • Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients
  • 2023
  • Ingår i: Journal of Translational Medicine. - : BMC. - 1479-5876. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDespite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies.MethodsHere, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved.ResultsWe identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool.ConclusionsThis study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
  •  
8.
  • Ceyhan, Atakan Burak, et al. (författare)
  • Novel drug targets and molecular mechanisms for sarcopenia based on systems biology
  • 2024
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 0753-3322 .- 1950-6007. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.
  •  
9.
  • Graves, Occam Kelly, et al. (författare)
  • Discovery of drug targets and therapeutic agents based on drug repositioning to treat lung adenocarcinoma
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 0753-3322 .- 1950-6007. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the LUAD patients. Methods: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of the proteins. Findings: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each target gene and validated the drug efficacy by performing in vitro experiments. Interpretation: We found the consensus targetable genes for the treatment of LUAD patients with different races and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the development of new drugs for disease treatment.
  •  
10.
  • Iqbal, Shazia, et al. (författare)
  • Design and synthesis of novel JNK inhibitors targeting liver pyruvate kinase for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma
  • 2024
  • Ingår i: Bioorganic chemistry. - : Elsevier BV. - 0045-2068. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy