SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kimata K) "

Sökning: WFRF:(Kimata K)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mani, K, et al. (författare)
  • Heparan/chondroitin/dermatan sulfate primer 2-(6-hydroxynaphthyl)-O-beta-D-xylopyranoside preferentially inhibits growth of transformed cells
  • 1998
  • Ingår i: Cancer Research. - 0008-5472. ; 58:6, s. 104-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylose forms the direct carbohydrate-protein link in extra- or pericellular proteoglycans (PGs) that are substituted with either chondroitin sulfate (CS)/dermatan sulfate (DS) and/or heparan sulfate (HS). Cell surface PGs carrying HS are important regulators of cell growth. Xylose coupled to an aromatic compound can enter cells and initiate either CS/DS synthesis or both HS and CS/DS synthesis, depending on the nature of the aromatic adduct. Here, we show that 2-(6-hydroxynaphthyl)-O-beta-D-xylopyranoside, which can prime both types of glycan chains, inhibits growth of a set of normal and transformed cells. Transformed cells are preferentially inhibited, and at a concentration of 0.15-0.20 mM xyloside, transformed cells are totally growth arrested, whereas normal cells are only < or = 50% inhibited. No inhibition of growth is observed with the stereoisomeric 2-(6-hydroxynaphthyl)-O-beta-L-xylopyranoside, which does not prime glycosaminoglycan synthesis at all; with the nonhydroxylated 2-naphthyl-O-beta-D-xylopyranoside, which only primes CS/DS synthesis under these conditions; or with p-nitrophenyl-O-beta-D-xylopyranoside, which is known to prime only CS/DS synthesis. We conclude that growth inhibition is due to priming of HS and/or CS/DS synthesis, which may either lead to the formation of specific antiproliferative glycans or glycan fragments or to interference with endogenous PG synthesis and turnover.
  •  
2.
  •  
3.
  • Muduli, P. K., et al. (författare)
  • Detection of the interfacial exchange field at a ferromagnetic insulator-nonmagnetic metal interface with pure spin currents
  • 2018
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • At the interface between a nonmagnetic metal (NM) and a ferromagnetic insulator (FI) spin current can interact with the magnetization, leading to a modulation of the spin current. The interfacial exchange field at these FI-NM interfaces can be probed by placing the interface in contact with the spin transport channel of a lateral spin valve (LSV) device and observing additional spin relaxation processes. We study interfacial exchange field in lateral spin valve devices where a Cu spin transport channel is in proximity with ferromagnetic insulator EuS (EuS-LSV) and yttrium iron garnet Y3Fe5O12 (YIG-LSV). The spin signals were compared with reference lateral spin valve devices fabricated on nonmagnetic Si/SiO2 substrate with MgO or AlOx capping. The nonlocal spin valve signal is about 4 and 6 times lower in the EuS-LSV and YIG-LSV, respectively. The suppression in the spin signal has been attributed to enhanced surface spin-flip probability at the Cu-EuS (or Cu-YIG) interface due to an interfacial spin-orbit field. Besides spin signal suppression we also found a widely observed low temperature peak in the spin signal at T similar to 30 K is shifted to higher temperature in the case of devices in contact with EuS or YIG. Temperature dependence of the spin signal for different injector-detector distances reveal fluctuating exchange field at these interfaces cause additional spin decoherence which limit spin relaxation time in addition to conventional sources of spin relaxation. Our results show that temperature-dependent measurement with pure spin current can be used to probe interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface.
  •  
4.
  • Perissinotto, D, et al. (författare)
  • Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan
  • 2000
  • Ingår i: Development: For advances in developmental biology and stem cells. - 1477-9129. ; 127:13, s. 2823-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that hyaluronan-binding proteoglycans play an important role as guiding cues during neural crest (NC) cell migration, but their precise function has not been elucidated. In this study, we examine the distribution, structure and putative role of the two major hyaluronan-binding proteoglycans, PG-M/versicans and aggrecan, during the course of avian NC development. PG-M/versicans V0 and V1 are shown to be the prevalent isoforms at initial and advanced phases of NC cell movement, whereas the V2 and V3 transcripts are first detected following gangliogenesis. During NC cell dispersion, mRNAs for PG-M/versicans V0/V1 are transcribed by tissues lining the NC migratory pathways, as well as by tissues delimiting nonpermissive areas. Immunohistochemistry confirm the deposition of the macromolecules in these regions and highlight regional differences in the density of these proteoglycans. PG-M/versicans assembled within the sclerotome rearrange from an initially uniform distribution to a preferentially caudal localization, both at the mRNA and protein level. This reorganization is a direct consequence of the metameric NC cell migration through the rostral portion of the somites. As suggested by previous in situ hybridizations, aggrecan shows a virtually opposite distribution to PG-M/versicans being confined to the perinotochordal ECM and extending dorsolaterally in a segmentally organized manner eventually to the entire spinal cord at axial levels interspacing the ganglia. PG-M/versicans purified from the NC migratory routes are highly polydispersed, have an apparent M(r) of 1,200-2,000 kDa, are primarily substituted with chondroitin-6-sulfates and, upon chondroitinase ABC digestion, are found to be composed of core proteins with apparent M(r )of 360-530, 000. TEM/rotary shadowing analysis of the isolated PG-M/versicans confirmed that they exhibit the characteristic bi-globular shape, have core proteins with sizes predicted for the V0/V1 isoforms and carry relatively few extended glycosaminoglycan chains. Orthotopical implantation of PG-M/versicans immobilized onto transplantable micromembranes tend to 'attract' moving cells toward them, whereas similar implantations of a notochordal type-aggrecan retain both single and cohorts of moving NC cells in close proximity of the implant and thereby perturb their spatiotemporal migratory pattern. NC cells fail to migrate through three-dimensional collagen type I-aggrecan substrata in vitro, but locomote in a haptotactic manner through collagen type I-PG-M/versican V0 substrata via engagement of HNK-1 antigen-bearing cell surface components. The present data suggest that PG-M/versicans and notochordal aggrecan exert divergent guiding functions during NC cell dispersion, which are mediated by both their core proteins and glycosaminoglycan side chains and may involve 'haptotactic-like' motility phenomena. Whereas aggrecan defines strictly impenetrable embryonic areas, PG-M/versicans are central components of the NC migratory pathways favoring the directed movement of the cells.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Yingsung, W, et al. (författare)
  • Molecular heterogeneity of the SHAP-hyaluronan complex - Isolation and characterization of the complex in synovial fluid from patients with rheumatoid arthritis
  • 2003
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 278:35, s. 32710-32718
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously found that a covalent complex of SHAPs (serum-derived hyaluronan-associated proteins), the heavy chains of inter-alpha-trypsin inhibitor family molecules, with hyaluronan ( HA) is accumulated in synovial fluid of patients with rheumatoid arthritis, and the complex is circulated in patient plasma at high concentrations. How the SHAP-HA complex participates in this disease is unknown. To address this question, it is essential to clarify the structural features of this macromolecule. The SHAP-HA complex purified from synovial fluid of the patients by three sequential CsCl isopycnic centrifugations was heterogeneous in density, and the fractions with different densities had distinct SHAP-to-HA ratios. Agarose gel electrophoresis and column chromatography revealed that there was no apparent difference in the size distribution of HA to which SHAPs were bound between the fractions with different densities. The SHAP-HA complex in the higher density fraction had fewer SHAP molecules per HA chain. Therefore, the difference between the fractions with different densities was due to a heterogeneous population of the SHAP-HA complex, namely the different number of SHAP molecules bound to an HA chain. Based on the SHAP and HA contents of the purified preparations, we estimated that an HA chain with a molecular weight of 2 x 10(6) has as many as five covalently bound SHAPs, which could give a proteinaceous multivalency to HA. Furthermore, we also found that the SHAP-HA complex tends to form aggregates, judging from the migration and elution profiles in agarose gel electrophoresis and gel filtration, respectively. The multivalent feature of the SHAP-HA complex was also confirmed by the negative staining electron micrographic images of the purified fractions. Taken together, those structural characteristics may underlie the aggregate-forming and extracellular matrix-stabilizing ability of the SHAP-HA complex.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy