SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kirschhock Christine) "

Sökning: WFRF:(Kirschhock Christine)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Castro, Maria, et al. (författare)
  • Zeolite Beta Formation from Clear Sols : Silicate Speciation, Particle Formation and Crystallization Monitored by Complementary Analysis Methods
  • 2016
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539. ; 22:43, s. 15307-15319
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of silicate nanoaggregates (NAs) at the very early stages of precursor sols and zeolite beta crystallization from silicate nanoparticles (NPs) are investigated in detail using a combination of different analysis methods, including liquid-state 29Si, 27Al, 14N, and 1H NMR spectroscopy, mass spectrometry (MS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and transmission electron microscopy at cryogenic temperatures (cryo-TEM). Prior to hydrothermal treatment, silicate NAs are observed if the Si/OH ratio in the reaction mixture is greater than 1. Condensation of oligomers within the NAs then generates NPs. Aluminum doped into the synthesis mixtures is located exclusively in the NPs, and is found exclusively in a state that is fourfold connected to silicate, favoring their condensation and aggregation. These results are in agreement with general trends observed for other systems. Silicate NAs are essential intermediates for zeolite formation and are generated by the aggregation of hydrated oligomers, aluminate, and templating cations. Subsequent further intra-nanoaggregate silicate condensation results in the formation of NPs. 1H and 14N liquid NMR as well as diffusion ordered spectroscopy (DOSY) experiments provide evidence for weakly restricted rotational and translational mobility of the organic template within NAs as a consequence of specific silicate–template interactions. NAs thus appear as key species in clear sols, and their presence in the precursor sol favors silicate condensation and further crystallization, promoted either by increasing the Si/OH ratio or by heating.
  •  
2.
  • Guo, Peng, 1984- (författare)
  • Structure Determination and Prediction of Zeolites : A Combined Study by Electron Diffraction, Powder X-Ray Diffraction and Database Mining
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Zeolites are crystalline microporous aluminosilicates with well-defined cavities or channels of molecular dimensions. They are widely used for applications such as gas adsorption, gas storage, ion exchange and catalysis. The size of the pore opening allows zeolites to be categorized into small, medium, large and extra-large pore zeolites. A typical zeolite is the small pore silicoaluminophosphate SAPO-34, which is an important catalyst in the MTO (methanol-to-olefin) process. The properties of zeolite catalysts are determined mainly by their structures, and it is therefore important to know the structures of these materials in order to understand their properties and explore new applications.Single crystal X-ray diffraction has been the main technique used to determine the structures of unknown crystalline materials such as zeolites. This technique, however, can be used only if crystals larger than several micrometres are available. Powder X-ray diffraction (PXRD) is an alternative technique to determine the structures if only small crystals are available. However, peak overlap, poor crystallinity and the presence of impurities hinder the solution of structures from PXRD data. Electron crystallography can overcome these problems. We have developed a new method, which we have called “rotation electron diffraction” (RED), for the automated collection and processing of three-dimensional electron diffraction data. This thesis describes how the RED method has been applied to determine the structures of several zeolites and zeolite-related materials. These include two interlayer expanded silicates (COE-3 and COE-4), a new layered zeolitic fluoroaluminophosphate (EMM-9), a new borosilicate (EMM-26), and an aluminosilicate (ZSM-25). We have developed a new approach based on strong reflections, and used it to determine the structure of ZSM-25, and to predict the structures of a series of complex zeolites in the RHO family. We propose a new structural principle that describes a series of structurally related zeolites known as “embedded isoreticular zeolite structures”, which have expanding unit cells. The thesis also summarizes several common structural features of zeolites in the Database of Zeolite Structures.
  •  
3.
  • Ravishankar, Raman, et al. (författare)
  • Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis
  • 1999
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 103:24, s. 4960-4964
  • Tidskriftsartikel (refereegranskat)abstract
    • The silica species contained in an aged clear suspension, which upon heating gives rise to the crystallization of Silicalite-1, were extracted with 80% efficiency using a sequence of acidification, salting out, phase transfer into organic solvent, and freeze-drying methods. This silica powder was characterized by X-ray scattering, transmission electron microscopy, atomic force microscopy, and 29Si magic angle spinning nuclear magnetic resonance. These techniques gave evidence for the presence of a very specific morphology, corresponding to slab shaped particles, with dimensions of 1.3 × 4.0 × 4.0 nm. The nanoslabs have the MFI structure with nine channel intersections per particle, each containing a TPA cation. The identity of the extracted nanoslabs with the species in suspension is evidenced with in situ and ex situ X-ray scattering.
  •  
4.
  • Ravishankar, Raman, et al. (författare)
  • Physicochemical characterization of silicalite-1 nanophase material
  • 1998
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 102:15, s. 2633-2639
  • Tidskriftsartikel (refereegranskat)abstract
    • A silicalite-1 nanophase material with an elementary particle size of 18-100 nm is synthesized from clear solution and isolated and purified using supercentrifugation. The nanopowder is characterized in detail using scanning electron microscopy, high-resolution transmission electron microscopy, attenuated force microscopy, 29Si magic angle spinning NMR, 13C cross polarization magic angle spinning NMR, X-ray diffraction, dinitrogen physisorption, and thermogravimetric analysis and compared with micrometer-sized silicalite-1. The nanosized and micrometer-sized materials have many common properties including the refined structure and the nature and concentrations of tetrapropylammonium species incorporated during the synthesis. Unique properties of the nanophase are a splitting of the characteristic framework vibration at 550 cm-1 into a doublet at 555 and 570 cm-1, a high concentration of defect sites, and a strain in the crystallites along the "a" crystallographic direction. The nanophase exhibits a two-stage dinitrogen physisorption in the low-pressure region, ascribed to adsorptions in micropores created by the stacking of the nanoparticles in addition to adsorptions in the intracrystalline micropores.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy