SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kirshner Alexandra E.) "

Sökning: WFRF:(Kirshner Alexandra E.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jakobsson, Martin, et al. (författare)
  • Ice sheet retreat dynamics inferred from glacial morphology of the central Pine Island Bay Trough, West Antarctica
  • 2012
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 38, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Pine Island Glacier drains portions of the West Antarctic Ice Sheet into the Amundsen Sea. During the Last Glacial Maximum the glacier extended nearly 500 km from its present location onto the outer continental shelf. Unusually restricted sea-ice cover during the austral summer of 2010 allowed for a systematic multibeam swath-bathymetric and chirp sonar survey of the mid-shelf section of Pine Island Trough. The mapped glacial landforms reveal new information about the paleo-Pine Island Ice Stream's dynamic retreat from the mid-shelf area and confirm previous suggestion of a retreat in distinct steps. The periods of grounding line stability during the overall retreat phase are marked by sediment accumulations, i.e. grounding zone wedges. These wedges are here mapped in sufficient detail to characterize spatial dimensions and estimate the volume of deposited sediment. Considering a range of sediment flux rates from the paleo-Pine Island Ice Stream we estimate that the largest and most clearly defined grounding zone wedge, located at about 73 degrees S in the surveyed area, took between 600 and 2000 years to form. The ice stream retreated landward of this wedge before 12.3 cal ka BP. The swath-bathymetric imagery of landforms in Pine Island Trough includes glacial features that suggest that retreat between periods of grounding line stability may be associated with episodes of ice shelf break-up. The depths of grounding line wedges decrease in a landward direction, from 740 to 670 m, and record elevation of the grounding line as it stepped landward. In all, the grounding line elevation varied by only similar to 80 m over a distance of just over 100 km, implying a low ice sheet profile during retreat. Finally, we revisited seismic reflection profile NB9902, acquired along Pine Island Trough in 1999, in combination with the newly acquired swath-bathymetric imagery from 2010. Together these data show that the ice stream paused during its retreat to form grounding zone wedges at an area in central Pine Island Trough where a high in dipping bedrock strata exists and the glacial trough is narrow, forming a bathymetric bottle neck.
  •  
2.
  • Kirshner, Alexandra E., et al. (författare)
  • Post-LGM deglaciation in Pine Island Bay, West Antarctica
  • 2012
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 38, s. 11-26
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans similar to 12.3-10.6 k cal yr BR It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before similar to 1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy