SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kittikorn Thorsak) "

Sökning: WFRF:(Kittikorn Thorsak)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Badia, J. D., et al. (författare)
  • Effect of sisal and hydrothermal ageing on the dielectric behaviour of polylactide/sisal biocomposites
  • 2017
  • Ingår i: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 149, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The dielectric properties of virgin polylactide (PLA) and its reinforced composites with different weight amounts of sisal fibres were assessed at broad temperature (from −130 °C to 130 °C) and frequency ranges (from 10−2–107 Hz), before and after being subjected to accelerated hydrothermal ageing. The synergetic effects of both the loading of sisal and hydrothermal ageing were analysed by means of dielectric relaxation spectra. The relaxation time functions were evaluated by the Havriliak-Negami model, substracting the ohmic contribution of conductivity. The intramolecular and intermolecular relaxations were respectively analysed by means of Arrhenius and Vogel-Fulcher-Tammann-Hesse thermal activation models. The addition of fibre increased the number of hydrogen bonds, which incremented the dielectric permittivity and mainly hindered the non-cooperative relaxations of the biocomposites by increasing the activation energy. Hydrothermal ageing enhanced the formation of the crystalline phase at the so-called transcrystalline region along sisal. This fact hindered the movement of the amorphous PLA fraction, and consequently decreased the dielectric permittivity and increased the dynamic fragility.
  •  
2.
  • Badia, J. D., et al. (författare)
  • Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario
  • 2017
  • Ingår i: Polymer degradation and stability. - : Elsevier. - 0141-3910 .- 1873-2321. ; 143, s. 9-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The eco-design considers the factors to prepare biocomposites under an end-of-life scenario. PLA/sisal biocomposites were obtained from amorphous polylactide and sisal loadings of 10, 20 and 30 wt% with and without coupling agent, and subjected to biodegradation in soil according to standard ISO846. Mass-loss, differential scanning calorimetry and size-exclusion chromatography were used for monitoring biodegradation. A statistical factorial analysis based on the molar mass Mn and crystallinity degree XC pointed out the relevance and interaction of amount of fibre and use of coupling agent with the time of burial in soil. During the preparation of biocomposites, chain scission provoked a similar reduction of Mn for coupled and non-coupled biocomposites. The amount of fibre was relevant for the increase of XC due to the increase of nucleation sites. The coupling agent accelerated the evolution of both factors: reduction of Mn and the consequent increase of XC, mainly during biodegradation in soil. Both factors should be balanced to facilitate microbial assimilation of polymer segments, since bacterial digestion is enhanced by chain scission but blocked by the promotion of crystalline fractions.
  •  
3.
  • Badia, J. D., et al. (författare)
  • Water absorption and hydrothermal performance of PHBV/sisal biocomposites
  • 2014
  • Ingår i: Polymer degradation and stability. - : Elsevier BV. - 0141-3910 .- 1873-2321. ; 108, s. 166-174
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of biocomposites of poly(hydroxybutyrate-co-valerate) (PHBV) and sisal fibre subjected to hydrothermal tests at different temperatures above the glass transition of PHBV (T-H = 26, 36 and 46 degrees C) was evaluated in this study. The influences of both the fibre content and presence of coupling agent were focused. The water absorption capability and water diffusion rate were considered for a statistical factorial analysis. Afterwards, the physico-chemical properties of water-saturated biocomposites were assessed by Fourier-Transform Infrared Analysis, Size Exclusion Chromatography, Differential Scanning Calorimetry and Scanning Electron Microscopy. It was found that the water diffusion rate increased with both temperature and percentage of fibre, whereas the amount of absorbed water was only influenced by fibre content. The use of coupling agent was only relevant at the initial stages of the hydrothermal test, giving an increase in the diffusion rate. Although the chemical structure and thermal properties of water-saturated biocomposites remained practically intact, the physical performance was considerably affected, due to the swelling of fibres, which internally blew-up the PHBV matrix, provoking cracks and fibre detachment.
  •  
4.
  • Gil-Castell, O., et al. (författare)
  • Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance
  • 2014
  • Ingår i: Polymer degradation and stability. - : Elsevier BV. - 0141-3910 .- 1873-2321. ; 108, s. 212-222
  • Tidskriftsartikel (refereegranskat)abstract
    • An accelerated hydrothermal degrading test was designed in order to analyse the synergic effect of water and temperature on PLA/sisal biocomposites with and without coupling agent. As well, the physicochemical properties of biocomposites were monitored along the hydrothermal test by means of Scanning Electron Microscopy, Size Exclusion Chromatography and Differential Scanning Calorimetry. The addition of fibre induced higher water absorption capability and promoted physical degradation, as observed in the surface topography. During the processing of biocomposites and throughout the hydrothermal ageing, a reduction of molecular weight due to chain scission was found. As a consequence, a faster formation of crystalline domains in the PIA matrix occurred the higher the amount of fibre was, which acted as a nucleating agent. Higher crystallinity was considered as a barrier against the advance of penetrant and a reduction in the diffusion coefficient was shown. The addition of coupling agent presented a different influence depending on the composition, showing an inflection point around 20% of sisal fibre.
  •  
5.
  • Gil-Castell, O., et al. (författare)
  • Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites
  • 2016
  • Ingår i: Polymer degradation and stability. - : Elsevier. - 0141-3910 .- 1873-2321.
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of the combined exposure to water and temperature on the behaviour of polylactide/sisal biocomposites coupled with maleic acid anhydride was assessed through accelerated hydrothermal ageing. The biocomposites were immersed in water at temperatures from 65 to 85 °C, between the glass transition and cold crystallisation of the PLA matrix. The results showed that the most influent factor for water absorption was the percentage of fibres, followed by the presence of coupling agent, whereas the effect of the temperature was not significant. Deep assessment was devoted to biocomposites subjected to hydrothermal ageing at 85 °C, since it represents the extreme degrading condition. The morphology and crystallinity of the biocomposites were evaluated by means of X-Ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The viscoelastic and thermal performance were assessed by means of dynamic mechanic thermal analysis (DMTA) and thermogravimetry (TGA). The presence of sisal generally diminished the thermal stability of the biocomposites, which was mitigated by the addition of the coupling agent. After composite preparation, the effectiveness of the sisal fibre was improved by the crystallisation of PLA around sisal, which increased the storage modulus and reduced the dampening factor. The presence of the coupling agent strengthened this effect. After hydrothermal ageing, crystallisation was promoted in all biocomposites therefore showing more fragile behaviour evidencing pores and cracks. However, the addition of coupling agent in the formulation of biocomposites contributed in all cases to minimise the effects of hydrothermal ageing.
  •  
6.
  •  
7.
  • Kittikorn, Thorsak, et al. (författare)
  • Comparison of water uptake as function of surface modification of empty fruit bunch oil palm fibres in PP biocomposites
  • 2013
  • Ingår i: BioResources. - : College of Natural Resources. - 1930-2126. ; 8:2, s. 2998-3016
  • Tidskriftsartikel (refereegranskat)abstract
    • Empty fruit bunch oil palm (EFBOP) fibres were surface modified by four different methods, propionylation, vinyltrimethoxy silanization, PPgMA dissolution modification, and PPgMA blending, and integrated into a polypropylene (PP) matrix. The designed biocomposites were subjected to an absorption process at different temperatures. Their water uptake behaviour was compared with the unmodified fibre biocomposites. An increased fibre content and temperature resulted in increased water uptake for all of the biocomposites. The biocomposites containing modified fibres showed a reduction in water uptake, rate of diffusion, sorption, and permeation in comparison with unmodified fibre composites. Comparing the 20 wt% fibre composites at ambient temperature, the performance in water absorption followed the sequence silanization < propionylation < PPgMA dissolution modification < PPgMA blending < no modification. Furthermore, the lowest water absorption was obtained from the silanized fibre/PP composite with 40% fibre content at ambient temperature. Dissolution or blending of PPgMA gave similar water uptake results. The reduction of diffusion, sorption, and permeation confirmed that the modification of fibres was potentially effective at resisting water penetration into the composites.
  •  
8.
  •  
9.
  • Kittikorn, Thorsak, et al. (författare)
  • Enhancement of interfacial adhesion and engineering properties of polyvinyl alcohol/polylactic acid laminate films filled with modified microfibrillated cellulose
  • 2020
  • Ingår i: Journal of plastic film & sheeting (Print). - : SAGE Publications Ltd. - 8756-0879 .- 1530-8014. ; 36:4, s. 368-390
  • Tidskriftsartikel (refereegranskat)abstract
    • This work was done to improve the interfacial adhesion and engineering performance of polyvinyl alcohol/polylactic acid laminate film by altering the polyvinyl alcohol phase surface properties via incorporating microfibrillated cellulose modified by propionylation. Incorporating the modified microfibrillated cellulose into polyvinyl alcohol film improved adhesion between film layers during the laminating process. Improved peel strength and tensile properties confirmed that modified microfibrillated cellulose can produce better bonding between polyvinyl alcohol and polylactic acid via mechanical interlocking and cohesive forces at the film interface. Modified microfibrillated cellulose (3 wt%) increased the peel strength by 40% comparing with the neat polyvinyl alcohol/polylactic acid laminate film.The reduction of both moisture absorption and diffusion rate of the modified microfibrillated cellulose–polyvinyl alcohol/polylactic acid to 20 and 23%, respectively, also indicated that the modified microfibrillated cellulose could inhibit moisture permeation across the film. This was because the modified microfibrillated cellulose is hydrophobic. Furthermore, the addition of modified microfibrillated cellulose also increased the decomposition temperature of the laminate film up to 10% as observed at 20% of remaining weight, while the storage modulus substantially increasing to 72% relative to the neat laminate film.The superior interfacial adhesion between the polylactic acid and modified microfibrillated cellulose–polyvinyl alcohol layers, observed by scanning electron microscopy, confirmed the improved compatibility between the polyvinyl alcohol and polylactic acid phases.
  •  
10.
  • Kittikorn, Thorsak, et al. (författare)
  • Enhancement of mechanical, thermal and antibacterial properties of sisal/polyhydroxybutyrate-co-valerate biodegradable composite
  • 2018
  • Ingår i: JOURNAL OF METALS MATERIALS AND MINERALS. - : CHULALONGKORN UNIV, METALLURGY & MATERIALS SCIENCE RESEARCH INST. - 0857-6149. ; 28:1, s. 52-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignocellulosic biocomposite is a promising biodegradable materials, though improvement of the interfacial adhesion between cellulose fibre and polymer matrix is still challenged. Therefore, this work investigated the effect of propionylation of sisal reinforced fibre in the sisal/polyhydroxybutyrate-co-valerate (PHBV) biocomposite. Propionylation involved esterification substitution of propionic anhydride to hydroxyl group of sisal fibre, where ester group (COOR) of propionylated fibre was successfully observed by Fourier transform Infrared spectroscopy (FTIR). Then mechanical and thermal properties were evaluated and biodegradation characteristics were assessed. The tensile strength and modulus of propionylated sisal/PHBV biocomposite were greater than unmodified sisal/PHBV, which revealed better compatibility at the interface. In addition, propionate moieties of sisal fibre could induce crystalline formation of PHBV, as determined by an increase of crystalline phase. The higher decomposition temperature (Td) and activation energy (Ea) of 155 kJ.mol(-1), determined by thermal gravimetric analyser (TGA), were strong confirmation of good thermal resistance of the propionylated sisal biocomposite. The storage modulus, as characterized by dynamic mechanical thermal analyser (DMTA), also revealed the improvement of stiffness. Bacterial growth tests evaluated the inhibition of bacterial growth on the PHBV biocomposites. It was clear that propionylation of sisal fibre decreased colonization of Staphylococcus aureus (SA) and Escherichia coli (E.coli).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy