SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiyama T.) "

Sökning: WFRF:(Kiyama T.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaptoge, S., et al. (författare)
  • World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions
  • 2019
  • Ingår i: Lancet Global Health. - : Elsevier BV. - 2214-109X. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. Methods In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. Findings Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0.685 (95% CI 0 . 629-0 741) to 0.833 (0 . 783-0- 882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. Interpretation We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  •  
2.
  • Martin, P., et al. (författare)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
3.
  • Sodergren, Erica, et al. (författare)
  • The genome of the sea urchin Strongylocentrotus purpuratus.
  • 2006
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 314:5801, s. 941-52
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
  •  
4.
  • Zuin, M., et al. (författare)
  • Overview of the RFX-mod fusion science activity
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
  •  
5.
  • Burke, R. D., et al. (författare)
  • A genomic view of the sea urchin nervous system
  • 2006
  • Ingår i: Developmental Biology. - : Elsevier BV. - 0012-1606 .- 1095-564X. ; 300:1, s. 434-460
  • Tidskriftsartikel (refereegranskat)abstract
    • The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins. (c) 2006 Elsevier Inc. All rights reserved.
  •  
6.
  • Martin, P., et al. (författare)
  • Overview of the RFX fusion science program
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:9, s. 094023-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy