SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klavins Kristaps) "

Sökning: WFRF:(Klavins Kristaps)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bowden, John A., et al. (författare)
  • Harmonizing lipidomics : NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma
  • 2017
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 58:12, s. 2275-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra-and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium.jlr While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
  •  
2.
  • Krauklis, Andrejs, et al. (författare)
  • FeOOH and Mn8O10Cl3 modified zeolites for As(V) removal in aqueous medium
  • 2017
  • Ingår i: Journal of chemical technology and biotechnology (1986). - : Wiley-Blackwell. - 0268-2575 .- 1097-4660. ; 92:8, s. 1948-1960
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Arsenic in drinking water poses serious potential health risks in more than 30 countries with total affected population of around 100 million people. The present study is devoted to the development of innovative sorbents based on zeolite materials for As(V) sorption by modifying raw materials with iron oxyhydroxide and manganese oxychloride. Natural clinoptilolite and synthetic zeolite A were modified in order to obtain improved sorption of As(V). Sorption properties of newly developed sorbentswere studied. Zeolites containing natural clinoptilolite are chosen due to relatively lowcost and their broad use in industrial production as well as characteristic large surface area. RESULTS: Results obtained indicate that modification of zeolites with FeOOH and Mn8O10Cl3 significantly improves the As(V) sorption capacity of newly developed materials. As(V) sorption on FeOOH-modified aluminosilicates follows the Langmuir model, while on unmodified aluminosilicates it is described by the Freundlich model. As(V) sorption kinetics on both modified and unmodified materials most precisely can be described by Lagergren's pseudo-second-order kinetic model. Elevated As(V) concentration on the surface of Mn8O10Cl3 crystals and amorphous FeOOH indicates these compounds as responsible for sorption increase. CONCLUSION: Developed sorbents show improved performance in comparison with their unmodified counterparts, with a dramatic increase in As(V) sorption capacity up to 99.3 times in the case of FeOOH-modified calcium zeolite A. These materials have great potential for As(V) removal in aqueousmedium. (C) 2017 Society of Chemical Industry
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy