SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klekner Almos) "

Sökning: WFRF:(Klekner Almos)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murnyák, Balázs, et al. (författare)
  • PARP1 expression and its correlation with survival is tumour molecular subtype dependent in glioblastoma
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:28, s. 46348-46362
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of PARP1 exists in various cancers, including glioblastoma (GBM). Although PARP1 inhibition is a promising therapeutic target, no comprehensive study has addressed PARP1's expression characteristics and prognostic role regarding molecular heterogeneity in astrocytomas including GBM. Our aim was to evaluate PARP1's associations with survival, WHO grade, lineage specific markers, and GBM transcriptomic subtypes. We collected genomic and clinical data from the latest glioma datasets of The Cancer Genome Atlas and performed PARP1, ATRX, IDH1, and p53 immunohistochemistry on GBM tissue samples. We demonstrated that PARP1 gain and increased mRNA expression are characteristics of high-grade astrocytomas, particularly of Proneural and Classical GBM subtypes. Additionally, higher PARP1 levels exhibited an inverse correlation with patient survival (p < 0.005) in the Classical subgroup. ATRX (p=0.006), and TP53 (p=0.015) mutations were associated with increased PARP1 expression and PARP1 protein level correlated with ATRX loss and p53 overexpression. Furthermore, higher PARP1 expression together with wildtype TP53 indicated shorter survival (p=0.039). Therefore, due to subtype specificity, PARP1 expression level and TP53 mutation status are reliable marker candidates to distinguish Proneural and Classical subtypes, with prognostic and therapeutic implications in GBM.
  •  
2.
  • Torchia, Jonathon, et al. (författare)
  • Molecular subgroups of atypical teratoid rhabdoid tumours in children : an integrated genomic and clinicopathological analysis
  • 2015
  • Ingår i: The Lancet Oncology. - 1470-2045 .- 1474-5488. ; 16:5, s. 569-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. Methods We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. Findings Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0.004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0.033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0.001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2.02 (95% CI 1.04-3.85; p=0.038) and 3.98 (1.71-9.26; p=0.001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. Interpretation An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours.
  •  
3.
  • Zhukova, Nataliya, et al. (författare)
  • WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma
  • 2014
  • Ingår i: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of gammaH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy