SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klenerman David) "

Sökning: WFRF:(Klenerman David)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axfors, Cathrine, et al. (författare)
  • Association between convalescent plasma treatment and mortality in COVID-19 : a collaborative systematic review and meta-analysis of randomized clinical trials
  • 2021
  • Ingår i: BMC Infectious Diseases. - : BioMed Central (BMC). - 1471-2334. ; 21:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, ). Methods: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. Results: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I-2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. Conclusions: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.
  •  
2.
  • Drews, Anna, et al. (författare)
  • Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations.
  •  
3.
  • James, John R., et al. (författare)
  • The T Cell Receptor Triggering Apparatus Is Composed of Monovalent or Monomeric Proteins
  • 2011
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology, Inc.. - 0021-9258 .- 1083-351X. ; 286:37, s. 31993-32001
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photo-bleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.
  •  
4.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Babakinejad, Babak, et al. (författare)
  • Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells
  • 2013
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 85:19, s. 42-9333
  • Tidskriftsartikel (refereegranskat)abstract
    • Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.
  •  
6.
  •  
7.
  • Dear, Alexander J., et al. (författare)
  • Kinetic diversity of amyloid oligomers
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The spontaneous assembly of proteins into amyloid fibrils is a phenomenon central to many increasingly common and currently incurable human disorders, including Alzheimer's and Parkinson's diseases. Oligomeric species form transiently during this process and not only act as essential intermediates in the assembly of new filaments but also represent major pathogenic agents in these diseases. While amyloid fibrils possess a common, defining set of physicochemical features, oligomers, by contrast, appear much more diverse, and their commonalities and differences have hitherto remained largely unexplored. Here, we use the framework of chemical kinetics to investigate their dynamical properties. By fitting experimental data for several unrelated amyloidogenic systems to newly derived mechanistic models, we find that oligomers present with a remarkably wide range of kinetic and thermodynamic stabilities but that they possess two properties that are generic: they are overwhelmingly nonfibrillar, and they predominantly dissociate back to monomers rather than maturing into fibrillar species. These discoveries change our understanding of the relationship between amyloid oligomers and amyloid fibrils and have important implications for the nature of their cellular toxicity.
  •  
8.
  • Fernandes, Ricardo A., et al. (författare)
  • A cell topography-based mechanism for ligand discrimination by the T cell receptor
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:28, s. 14002-14010
  • Tidskriftsartikel (refereegranskat)abstract
    • The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes. 
  •  
9.
  • Flagmeier, Patrick, et al. (författare)
  • Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation
  • 2020
  • Ingår i: Nature Structural and Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9993 .- 1545-9985. ; 27:10, s. 886-891
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of amyloid deposits in human tissues is a defining feature of more than 50 medical disorders, including Alzheimer’s disease. Strong genetic and histological evidence links these conditions to the process of protein aggregation, yet it has remained challenging to identify a definitive connection between aggregation and pathogenicity. Using time-resolved fluorescence microscopy of individual synthetic vesicles, we show for the Aβ42 peptide implicated in Alzheimer’s disease that the disruption of lipid bilayers correlates linearly with the time course of the levels of transient oligomers generated through secondary nucleation. These findings indicate a specific role of oligomers generated through the catalytic action of fibrillar species during the protein aggregation process in driving deleterious biological function and establish a direct causative connection between amyloid formation and its pathological effects.
  •  
10.
  • Guha, Arnab, et al. (författare)
  • Measurement of protein binding with vastly improved time resolution using a quartz crystal microbalance driven at a fixed frequency
  • 2017
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Quartz crystal microbalance (QCM) is commonly used to study biomolecular binding by measuring shifts in resonance frequency of a quartz-crystal-oscillator. However, the currently used methods like impedance analysis or QCM-D, which require repeated sweeps or ringing, are limited in time resolution (~1 second) due to the need for averaging. This restricts our ability to study transient biomolecular processes, which occur in sub-millisecond time scale. A novel technique has been reported here that allows quantification of resonance frequency of a quartz-crystal-oscillator with significantly improved time resolution by driving and measuring continuously at a constant frequency within the resonance bandwidth. Method: The reactive component of the experimentally obtained impedance is utilized for the estimation of resonance frequency from the Butterworth Van-dyke (BVD) model of a quartz-crystal-oscillator, assuming that changes in motional inductance and capacitance around resonance are negligible. Triplicate sets of experiments involving the binding of streptavidin with a biotin functionalized 14.3 MHz quartz oscillator surface were performed. Intermittent frequency sweeps and fixed frequency drives, both of 0.1 second duration and around 14.3 MHz, were taken at intervals of 2 minutes under the flow of phosphate-buffer-saline (PBS buffer) before and after injection of streptavidin. Results: The average shift in resonance frequency from the baseline (measurements before streptavidin injection) due to streptavidin-biotin binding, calculated from the fixed frequency drive or FFD (148 Hz) was within 1% of that estimated from the frequency sweep method by fitting the experimentally recorded impedance employing the BVD model (149 Hz). Discussion: The agreement of the FFD with conventional frequency sweep method suggests that protein binding can be quantified with reasonable accuracy from each impedance data point, which with our set-up is recorded at 30 kHz sampling rate. This gives a time resolution of 0.03 millisecond, which is about 4 orders of magnitude improvement over the state-of-the-art.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy