SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kleywegt GJ) "

Sökning: WFRF:(Kleywegt GJ)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kleywegt, GJ, et al. (författare)
  • The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes
  • 1997
  • Ingår i: JOURNAL OF MOLECULAR BIOLOGY. - 0022-2836. ; 272:3, s. 383-397
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose. Endoglucanase I (EG I) is the major endoglucanase produced by the cellulolytic fungus Trichoderma reesei, accounting for 5 to 10% of the total amount of cellulases produced by this organism. Together with EG I from Humicola insolens and T. reesei cellobiohydrolase I (CBH I), the enzyme is classified into family 7 of the glycosyl hydrolases, and it catalyses hydrolysis with a net retention of the anomeric configuration.The structure of the catalytic core domain (residues 1 to 371) of EG I from T. reesei has been determined at 3.6 A resolution by the molecular replacement method using the structures of T. reesei CBH I and H. insolens EG I as search models. By employing the 2-fold non-crystallographic symmetry (NCS), the structure was refined successfully, despite the limited resolution. The final model has an R-factor of 0.201 (Rfree 0.258).The structure of EG I reveals an extended, open substrate-binding cleft, rather than a tunnel as found in the homologous cellobiohydrolase CBH I. This confirms the earlier proposal that the tunnel-forming loops in CBH I have been deleted in EG I, which has resulted in an open active site in EG I, enabling it to function as an endoglucanase. Comparison of the structure of EG I with several related enzymes reveals structural similarities, and differences that relate to their biological function in degrading particular substrates. A possible structural explanation of the drastically different pH profiles of T. reesei and H. insolens EG I is proposed.
  •  
2.
  • Becker, D, et al. (författare)
  • Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei CeI7A and its E223S/A224H/L225V/T226A/D262G mutant
  • 2001
  • Ingår i: Biochemical Journal. ; 356, s. 19-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.
  •  
3.
  • Chaudhuri, BN, et al. (författare)
  • Structures of cellular retinoic acid binding proteins I and II in complex with synthetic retinoids
  • 1999
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY. - 0907-4449. ; 55, s. 1850-1857
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinoids play important roles in diverse cellular processes including growth, cell differentiation and vision. Many natural and synthetic retinoids are used as drugs in dermatology and oncology. A large amount of data has been accumulated on the cellular activity of different synthetic retinoids. They are stabilized and transported inside the cell cytoplasm by binding and transport proteins, such as cellular retinol-binding proteins and cellular retinoic acid binding proteins (CRABPs). The structures of human CRABP II in complex with two different synthetic retinoids, Ro13-6307 and Ro12--7310 (at 2.1 and 2.0 A resolution, respectively) and of bovine CRABP I in complex with a retinobenzoic acid, Am80 (at 2.8 A resolution) are described. The binding affinities of human CRABP I and II for the retinoids studied here have been determined. All these compounds have comparable binding affinities (nanomolar range) for both CRABPs. Apart from the particular interactions of the carboxylate group of the retinoids with specific protein groups, each structure reveals characteristic interactions. Studying the atomic details of the interaction of retinoids with retinoid-binding proteins facilitates the understanding of the kinetics of retinoid trafficking inside the cytoplasm.
  •  
4.
  • Chaudhuri, BN, et al. (författare)
  • The structures of alpha(2u)-globulin and its complex with a hyaline droplet inducer
  • 1999
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY. - 0907-4449. ; 55, s. 753-762
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpha 2u-globulin (A2U) is the major urinary protein excreted by adult male rats. The structure of a monoclinic crystal form of A2U was reported in 1992 [Bocskei et al. (1992). Nature (London), 360, 186-188]. The structures of an orthorhombic crystal form of A2U at 2. 5 A resolution (refined to an R factor of 0.248; Rfree = 0.264) and of a complex between A2U and d-limonene 1,2-epoxide (DLO) at 2.9 A resolution (R factor = 0.248; Rfree = 0.260) are presented here. DLO is one of a diverse group of chemicals which cause a male rat-specific renal carcinogenesis called hyaline-droplet nephropathy. The rate-determining step in the development of this disorder is the binding of the toxin to A2U. Comparison of the cavities in A2U and in the corresponding mouse urinary protein (MUP) reveal that the former is tailor-made for small oval hydrophobic ligands such as DLO. The cavity in MUP is more shallow and elongated and cannot easily accommodate such ligands.
  •  
5.
  • Jones, TA, et al. (författare)
  • CASP3 comparative modeling evaluation
  • 1999
  • Ingår i: Proteins. - 0887-3585 .- 1097-0134. ; , s. 30-46
  • Tidskriftsartikel (refereegranskat)abstract
    • We report our evaluation of the CASP3 comparative modelling competition. Our analysis covers the accuracy of the over-all fold, the bridging of insertions and deletions, and the adding of side-chains. We describe our attempts at automating aspects of the evaluation.
  •  
6.
  • Kleywegt, GJ, et al. (författare)
  • A re-evaluation of the crystal structure of chloromuconate cycloisomerase
  • 1996
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY. - 0907-4449. ; 52, s. 858-863
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown here that the reported 3 A crystal structure of chloromuconate cycloisomerase from Alcaligenes eutrophus [Hoier, Schlomann, Hammer, Glusker, Carrell, Goldman, Stezowski & Heinemann (1994). Acta Cryst. D50, 75-84] was refined in the incorrect space group I4. In addition, a stretch of about 25 residues near the N-terminus is out-of-register with the density in the original structure. From the coordinates and structure factors deposited in the Protein Data Bank (PDB), it was possible to determine the correct space group to be I422. The structure was then re-refined, using the original data reduced to I422, to a crystallographic free R factor of 0.264 at 3 A resolution (conventional R factor 0.189). With conservative refinement and rebuilding methods, the errors in the chain tracing could be identified and remedied. Since the two molecules per asymmetric unit in the original structure are actually related by crystallographic symmetry, the observed differences between them are artefacts. In particular, the differences between, and peculiarities of the metal-binding sites are unreal. This case shows the dangers of crystallographic refinement in cases with unfavourable data-to-parameter ratios, and the importance of reducing the number of parameters in such cases to prevent gross errors (for instance, by using NCS constraints). It also demonstrates how the evaluation and monitoring of model quality during the entire refinement and rebuilding process can be used to detect and remedy serious errors. Finally, it presents a strong case in favour of depositing not only model coordinates, but also experimental data (preferably, both merged and unmerged data).
  •  
7.
  • Kleywegt, GJ, et al. (författare)
  • Around O
  • 2001
  • Ingår i: International Tables for Crystallography. Crystallography of Biological Macromolecules. ; , s. 353-356, 366
  • Bokkapitel (refereegranskat)
  •  
8.
  •  
9.
  • KLEYWEGT, GJ, et al. (författare)
  • CRYSTAL-STRUCTURES OF CELLULAR RETINOIC ACID-BINDING PROTEIN-I AND PROTEIN-II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID AND A SYNTHETIC RETINOID
  • 1994
  • Ingår i: STRUCTURE. - 0969-2126. ; 2:12, s. 1241-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Retinoic acid (RA) plays a fundamental role in diverse cellular activities. Cellular RA binding proteins (CRABPs) are thought to act by modulating the amount of RA available to nuclear RA receptors. CRABPs and cellular retinol-binding proteins (CRBPs) share a unique fold of two orthogonal beta-sheets that encapsulate their ligands. It has been suggested that a trio of residues are the prime determinants defining the high specificity of CRBPs and CRABPs for their physiological ligands. RESULTS: Bovine/murine CRABP I and human CRABP II have been crystallized in complex with their natural ligand, all-trans-RA. Human CRABP II has also been crystallized in complex with a synthetic retinoid, 'compound 19'. Their structures have been determined and refined at resolutions of 2.9 A, 1.8 A and 2.2 A, respectively. CONCLUSIONS: The retinoid-binding site in CRABPs differs significantly from that observed in CRBP. Structural changes in three juxtaposed areas of the protein create a new, displaced binding site for RA. The carboxylate of the ligand interacts with the expected trio of residues (Arg132, Tyr134 and Arg111; CRABP II numbering). The RA ligand is almost flat with the beta-ionone ring showing a significant deviation (-33 degrees) from a cis conformation relative to the isoprene tail. The edge atoms of the beta-ionone ring are accessible to solvent in a suitable orientation for presentation to metabolizing enzymes. The bulkier synthetic retinoid causes small conformational changes in the protein structure.
  •  
10.
  • Kleywegt, GJ, et al. (författare)
  • Databases in protein crystallography
  • 1998
  • Ingår i: ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY. - 0907-4449. ; 54, s. 1119-1131
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • Applications of structural databases in the protein crystallographic structure determination process are reviewed, using mostly examples from work carried out by the authors. Four application areas are discussed: model building, model refinement, model validation and model analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy