SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kliewer J.) "

Sökning: WFRF:(Kliewer J.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schumann, Gunter, et al. (författare)
  • KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:50, s. 14372-14377
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified beta-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 x 10(-12)). beta-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific beta-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
  •  
2.
  •  
3.
  • Koller, C., et al. (författare)
  • Analysis and Design of Tuned Turbo Codes
  • 2012
  • Ingår i: IEEE Transactions on Information Theory. - 0018-9448 .- 1557-9654. ; 58:7, s. 4796-4813
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been widely observed that there exists a fundamental tradeoff between the minimum (Hamming) distance properties and the iterative decoding convergence behavior of turbo-like codes. While capacity-achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length, and they therefore exhibit an error floor at moderate-to-high signal-to-noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper, we introduce the concept of tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where asymptoticminimum distance growth rates, convergence thresholds, and code rates can be tradedoff using two tuning parameters: lambda and mu By decreasing lambda, the asymptotic minimum distance growth rate is reduced in exchange for improved iterative decoding convergence behavior, while increasing lambda raises the asymptotic minimum distance growth rate at the expense of worse convergence behavior, and thus, the code performance can be tuned to fit the desired application. By decreasing mu, a similar tuning behavior can be achieved for higher rate code ensembles.
  •  
4.
  •  
5.
  • Bohlin, Alexis, et al. (författare)
  • Direct measurement of S-branch N(2)-H(2) Raman linewidths using time-resolved pure rotational coherent anti-Stokes Raman spectroscopy.
  • 2012
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 137:7
  • Tidskriftsartikel (refereegranskat)abstract
    • S-branch N(2)-H(2) Raman linewidths have been measured in the temperature region 294-1466 K using time-resolved dual-broadband picosecond pure rotational coherent anti-Stokes Raman spectroscopy (RCARS). Data are extracted by mapping the dephasing rates of the CARS signal temporal decay. The J-dependent coherence decays are detected in the time domain by following the individual spectral lines as a function of probe delay. The linewidth data set was employed in spectral fits of N(2) RCARS spectra recorded in binary mixtures of N(2) and H(2) at calibrated temperature conditions up to 661 K using a standard nanosecond RCARS setup. In this region, the set shows a deviation of less than 2% in comparison with thermocouples. The results provide useful knowledge for the applicability of N(2) CARS thermometry on the fuel-side of H(2) diffusion flames.
  •  
6.
  •  
7.
  • Gao, Yi, et al. (författare)
  • In situ determination of N-2 broadening coefficients in flames for rotational CARS thermometry
  • 2013
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 1540-7489. ; 34, s. 3637-3644
  • Tidskriftsartikel (refereegranskat)abstract
    • Total N-2 S-branch broadening coefficients have been measured in situ as a function of radial position in a highly sooting ethylene diffusion flame by the use of time-resolved dual-broadband picosecond pure rotational CARS (RCARS). Time-domain measurements of the J-dependent N-2 rotational coherence decays in the flame were used to determine the broadening coefficients, and these coefficients were then used in the spectral fitting routine for the determination of temperature and [O-2]/[N-2] ratio in the flame. Corrections of up to 125 K are found when compared to spectral fitting using an ECS self-broadened N-2 linewidth model. The presented technique effectively takes into account contributions to the N-2 linewidths from all collision partners without any a priori knowledge of relative species concentrations. Published by Elsevier Inc. on behalf of The Combustion Institute.
  •  
8.
  • Kliewer, C. J., et al. (författare)
  • Time-domain measurements of S-branch N-2-N-2 Raman linewidths using picosecond pure rotational coherent anti-Stokes Raman spectroscopy
  • 2012
  • Ingår i: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171 .- 1432-0649. ; 108:2, s. 419-426
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved dual-broadband picosecond pure rotational CARS has been applied to measure self-broadened S-branch N-2-N-2 Raman linewidths in the temperature range 294-1466 K. The coherence decays were detected directly in the time domain by following the J-dependent CARS signal decay as a function of probe delay. The rotational Raman N-2-N-2 linewidths were derived from these time-dependent decays and evaluated for thermometric accuracy. Comparisons were made to the energy-corrected sudden (ECS) and modified exponential gap (MEG) dynamical scaling laws, and the results were used to quantify the sensitivity of nanosecond rotational CARS thermometry to the linewidth model employed. The uncertainty based on the linewidth model used in pure N-2 was found to be 2 %. The merits and limitations of this rapid method for the determination of accurate Raman linewidths are discussed.
  •  
9.
  • Kliewer, J., et al. (författare)
  • Combining FEC and optimal soft-input source decoding for the reliable transmission of correlated variable-length encoded signals
  • 2002
  • Ingår i: DATA COMPRESSION CONFERENCE, PROCEEDINGS. - 0769514774 ; , s. 83-91
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we utilize both the implicit residual source correlation and the explicit redundancy from a forward-error-correction (FEC) scheme for the error protection of packetized variable-length encoded source indices. The implicit source correlation is exploited in a novel symbol-based soft-input a-posteriori probability (APP) decoder, which leads to an optimal decoding process in combination with a mean-squares or maximum a-posteriori probability estimation of the reconstructed source signal. When additionally the variable-length encoded source data is protected by channel codes, an iterative source-channel decoder can be obtained in the same way as for serially concatenated codes, where the outer constituent decoder is replaced by the proposed APP source decoder. Simulation results show that by additionally considering the correlations between the variable-length encoded source indices the error-correction performance can be highly increased.
  •  
10.
  • Kliewer, J., et al. (författare)
  • Iterative joint source-channel decoding of variable-length codes using residual source redundancy
  • 2005
  • Ingår i: IEEE Transactions on Wireless Communications. - 1536-1276 .- 1558-2248. ; 4:3, s. 919-929
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel symbol-based soft-input a posteriori probability (APP) decoder for packetized variable-length encoded source indexes transmitted over wireless channels where the residual redundancy after source encoding is exploited for error protection. In combination with a mean-square or maximum APP estimation of the reconstructed source data, the whole decoding process is close to optimal. Furthermore, solutions for the proposed APP decoder with reduced complexity are discussed and compared to the near-optimal solution. When, in addition, channel codes are employed for protecting the variable-length encoded data, an iterative source-channel decoder can be obtained in the same way as for serially concatenated codes, where the proposed APP source decoder then represents one of the two constituent decoders. The simulation results show that this iterative decoding technique leads to substantial error protection for variable-length encoded correlated source signals, especially, when they are transmitted over highly corrupted channels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy