SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klint Susanne) "

Sökning: WFRF:(Klint Susanne)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fleetwood, Filippa, et al. (författare)
  • Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity
  • 2014
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 4, s. 7518-
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis plays an important role in cancer and ophthalmic disorders such as age-related macular degeneration and diabetic retinopathy. The vascular endothelial growth factor (VEGF) family and corresponding receptors are regulators of angiogenesis and have been much investigated as therapeutic targets. The aim of this work was to generate antagonistic VEGFR2-specific affinity proteins having adjustable pharmacokinetic properties allowing for either therapy or molecular imaging. Two antagonistic Affibody molecules that were cross-reactive for human and murine VEGFR2 were selected by phage and bacterial display. Surprisingly, although both binders independently blocked VEGF-A binding, competition assays revealed interaction with non-overlapping epitopes on the receptor. Biparatopic molecules, comprising the two Affibody domains, were hence engineered to potentially increase affinity even further through avidity. Moreover, an albumin-binding domain was included for half-life extension in future in vivo experiments. The best-performing of the biparatopic constructs demonstrated up to 180-fold slower dissociation than the monomers. The new Affibody constructs were also able to specifically target VEGFR2 on human cells, while simultaneously binding to albumin, as well as inhibit VEGF-induced signaling. In summary, we have generated small antagonistic biparatopic Affibody molecules with high affinity for VEGFR2, which have potential for both future therapeutic and diagnostic purposes in angiogenesis-related diseases.
  •  
2.
  • Klint, Susanne, et al. (författare)
  • Izokibep : Preclinical development and first-in-human study of a novel IL-17A neutralizing Affibody molecule in patients with plaque psoriasis
  • 2023
  • Ingår i: mAbs. - : Taylor & Francis. - 1942-0862 .- 1942-0870. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psoriasis, an immune-mediated inflammatory disease, affects nearly 125 million people globally. The interleukin (IL)-17A homodimer is a key driver of psoriasis and other autoimmune diseases, including psoriatic arthritis, axial spondyloarthritis, hidradenitis suppurativa, and uveitis. Treatment with monoclonal antibodies (mAbs) against IL-17A provides an improvement in the Psoriasis Area and Severity Index compared to conventional systemic agents. In this study, the Affibody(CIRCLED LATIN CAPITAL LETTER R) technology was used to identify and optimize a novel, small, biological molecule comprising three triple helical affinity domains, izokibep (previously ABY-035), for the inhibition of IL-17A signaling. Preclinical studies show that izokibep, a small 18.6 kDa IL-17 ligand trap comprising two IL-17A-specific Affibody domains and one albumin-binding domain, selectively inhibits human IL-17A in vitro and in vivo with superior potency and efficacy relative to anti-IL-17A mAbs. A Phase 1 first-in-human study was conducted to establish the safety, pharmacokinetics, and preliminary efficacy of izokibep, when administered intravenously and subcutaneously as single doses to healthy subjects, and as single intravenous and multiple subcutaneous doses to patients with psoriasis (NCT02690142; EudraCT No: 2015-004531-13). Izokibep was well tolerated with no meaningful safety concerns identified in healthy volunteers and patients with psoriasis. Rapid efficacy was seen in all psoriasis patients after one dose which further improved in patients receiving multiple doses. A therapeutic decrease in joint pain was also observed in a single patient with concurrent psoriatic arthritis. The study suggests that izokibep has the potential to safely treat IL17A-associated diseases such as psoriasis, psoriatic arthritis, axial spondyloarthritis, hidradenitis suppurativa, and uveitis.
  •  
3.
  • Oroujeni, Maryam, PhD, 1982-, et al. (författare)
  • Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3
  • 2023
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 124-125
  • Tidskriftsartikel (refereegranskat)abstract
    • B7-H3 (CD276), an immune checkpoint protein, is a promising molecular target for immune therapy of malignant tumours. Sufficient B7-H3 expression level is a precondition for successful therapy. Radionuclide molecular imaging is a powerful technique for visualization of expression levels of molecular targets in vivo. Use of small radiolabelled targeting proteins would enable high-contrast radionuclide imaging of molecular targets if adequate binding affinity and specificity of an imaging probe could be provided. Affibody molecules, small engineered affinity proteins based on a non-immunoglobulin scaffold, have demonstrated an appreciable potential in radionuclide imaging. Proof-of principle of radionuclide visualization of expression levels of B7-H3 in vivo was demonstrated using the [99mTc]Tc-AC12-GGGC Affibody molecule. We performed an affinity maturation of AC12, enabling selection of clones with higher affinity. Three most promising clones were expressed with a -GGGC (triglycine-cysteine) chelating sequence at the C-terminus and labelled with technetium-99m (99mTc). 99mTc-labelled conjugates bound to B7-H3-expressing cells specifically in vitro and in vivo. Biodistribution in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrated improved imaging properties of the new conjugates compared with the parental variant [99mTc]Tc-AC12-GGGC. [99mTc]Tc-SYNT-179 provided the strongest improvement of tumour-to-organ ratios. Thus, affinity maturation of B7-H3 Affibody molecules could improve biodistribution and targeting properties for imaging of B7-H3-expressing tumours.
  •  
4.
  • Parks, Luke, et al. (författare)
  • Directed evolution of an affibody molecule for carbonic anhydrase IX using E. coli display and fluorescence-activated cell sorting
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that plays an important role in pH regulation and cellular homeostasis. Overexpression of CAIX is commonly observed in various solid tumors, making it an attractive target for cancer therapy. Affibody molecules have previously been developed for CAIX and demonstrated potential as tracers for molecular imaging in murine xenografted tumor models. Here, we further develop such affibody molecules by displaying a designed affibody library on the surface of Escherichia coli, followed by isolation of CAIX-binding variants by a combination of magnetic-assisted cell sorting and fluorescence-activated cell sorting. The sortings were successful and screening of candidates after selection revealed several variants with improved properties, most notably an increase in affinity and CAIX cell binding at 37°C and 42°C. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy