SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klockner H. R.) "

Sökning: WFRF:(Klockner H. R.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 476:3, s. 3478-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams.We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for HII galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032to 1040erg s-1: LINERs and HII galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ~107M⊙, but a break emerges at lower masses. Using [OIII] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted HII galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; HII galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.
  •  
2.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs - II. The e-MERLIN legacy survey of nearby galaxies. The deepest radio view of the Palomar sample on parsec scale
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:4, s. 4749-4767
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the second data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 177 nearby galaxies from the Palomar sample, observed with the e-MERLIN array, as part of the Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies Sample (LeMMINGs) survey. Together with the 103 targets of the first LeMMINGs data release, this represents a complete sample of 280 local active (LINER and Seyfert) and inactive galaxies (H ii galaxies and absorption line galaxies, ALG). This large program is the deepest radio survey of the local Universe, ≳1017.6 W Hz-1, regardless of the host and nuclear type: we detect radio emission ≳0.25 mJy beam-1 for 125/280 galaxies (44.6 per cent) with sizes of typically ≲100 pc. Of those 125, 106 targets show a core which coincides within 1.2 arcsec with the optical nucleus. Although we observed mostly cores, around one third of the detected galaxies features jetted morphologies. The detected radio core luminosities of the sample range between ∼1034 and 1040 erg s-1. LINERs and Seyferts are the most luminous sources, whereas H ii galaxies are the least. LINERs show FR I-like core-brightened radio structures while Seyferts reveal the highest fraction of symmetric morphologies. The majority of H ii galaxies have single radio core or complex extended structures, which probably conceal a nuclear starburst and/or a weak active nucleus (seven of them show clear jets). ALGs, which are typically found in evolved ellipticals, although the least numerous, exhibit on average the most luminous radio structures, similar to LINERs.
  •  
3.
  • Baldi, R. D., et al. (författare)
  • LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: Exploring the origin of nuclear radio emission in active and inactive galaxies through the [O iii] - Radio connection
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:2, s. 2019-2038
  • Tidskriftsartikel (refereegranskat)abstract
    • What determines the nuclear radio emission in local galaxies? To address this question, we combine optical [O iii] line emission, robust black hole (BH) mass estimates, and high-resolution e-MERLIN 1.5-GHz data, from the LeMMINGs survey, of a statistically complete sample of 280 nearby optically active (LINER and Seyfert) and inactive [H ii and absorption line galaxies (ALGs)] galaxies. Using [O iii] luminosity (L[O III]) as a proxy for the accretion power, local galaxies follow distinct sequences in the optical-radio planes of BH activity, which suggest different origins of the nuclear radio emission for the optical classes. The 1.5-GHz radio luminosity of their parsec-scale cores (Lcore) is found to scale with BH mass (MBH) and [O iii] luminosity. Below MBH ∼106.5 M⊙, stellar processes from non-jetted H ii galaxies dominate with Lcore ∝ MBH0.61 ± 0.33 and Lcore ∝ L[O III]0.79 ± 0.30. Above MBH ∼106.5 M⊙, accretion-driven processes dominate with Lcore ∝ MBH1.5-1.65 and Lcore ∝ L[O III]0.99-1.31 for active galaxies: radio-quiet/loud LINERs, Seyferts, and jetted H ii galaxies always display (although low) signatures of radio-emitting BH activity, with L1.5 GHz ≳ 1019.8 W Hz-1 and MBH ≳ 107 M⊙, on a broad range of Eddington-scaled accretion rates (m). Radio-quiet and radio-loud LINERs are powered by low-m discs launching sub-relativistic and relativistic jets, respectively. Low-power slow jets and disc/corona winds from moderately high to high-m discs account for the compact and edge-brightened jets of Seyferts, respectively. Jetted H ii galaxies may host weakly active BHs. Fuel-starved BHs and recurrent activity account for ALG properties. In conclusion, specific accretion-ejection states of active BHs determine the radio production and the optical classification of local active galaxies.
  •  
4.
  • de Blok, W.J.G., et al. (författare)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
5.
  • Dullo, B. T., et al. (författare)
  • LeMMINGs. VI. Connecting nuclear activity to bulge properties of active and inactive galaxies: radio scaling relations and galaxy environment
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 3412-3438
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiwavelength studies indicate that nuclear activity and bulge properties are closely related, but the details remain unclear. To study this further, we combine Hubble Space Telescope bulge structural and photometric properties with 1.5 GHz, e-MERLIN nuclear radio continuum data from the LeMMINGs survey for a large sample of 173 'active' galaxies (LINERs and Seyferts) and 'inactive' galaxies (H IIs and absorption line galaxies, ALGs). Dividing our sample into active and inactive, they define distinct (radio core luminosity)-(bulge mass), LR,core − M∗,bulge, relations, with a mass turnover at M∗,bulge ∼ 109.8±0.3M☉ (supermassive blackhole mass MBH ∼ 106.8±0.3M☉), which marks the transition from AGN-dominated nuclear radio emission in more massive bulges to that mainly driven by stellar processes in low-mass bulges. None of our 10/173 bulge-less galaxies host an AGN. The AGN fraction increases with increasing M∗,bulge such that foptical_AGN ∝ M∗,bulge0.24±0.06 and fradio_AGN ∝ M∗,bulge0.24±0.05. Between M∗,bulge ∼ 108.5 and 1011.3M☉, foptical_AGN steadily rises from 15 ± 4 to 80 ± 5 per cent. We find that at fixed bulge mass, the radio loudness, nuclear radio activity, and the (optical and radio) AGN fraction exhibit no dependence on environment. Radio-loud hosts preferentially possess an early-type morphology than radio-quiet hosts, the two types are however indistinguishable in terms of bulge Sérsic index and ellipticity, while results on the bulge inner logarithmic profile slope are inconclusive. We finally discuss the importance of bulge mass in determining the AGN triggering processes, including potential implications for the nuclear radio emission in nearby galaxies.
  •  
6.
  • Dullo, B. T., et al. (författare)
  • LeMMINGs: V. Nuclear activity and bulge properties: A detailed multi-component decomposition of e -MERLIN Palomar galaxies with HST
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • We used high-resolution HST imaging and e-MERLIN 1.5-GHz observations of galaxy cores from the LeMMINGs survey to investigate the relation between optical structural properties and nuclear radio emission for a large sample of galaxies. We performed accurate, multi-component decompositions of new surface brightness profiles extracted from HST images for 163 LeMMINGs galaxies and fitted up to six galaxy components (e.g. bulges, discs, AGN, bars, rings, spiral arms, and nuclear star clusters) simultaneously with Sérsic and/or core-Sérsic models. By adding such decomposition data for ten LeMMINGs galaxies from our past work, the final sample of 173 nearby galaxies (102 Ss, 42 S0s, 23 Es, plus six Irr) with a typical bulge stellar mass of M∗,bulge ~ 106 -1012.5 M⊙ encompasses all optical spectral classes: low-ionisation nuclear emission-line region (LINER), Seyfert, Absorption Line Galaxy (ALG), and H′ ¯II. We show that the bulge mass can be significantly overestimated in many galaxies when components such as bars, rings, and spirals are not included in the fits. We additionally implemented a Monte Carlo method to determine errors on the bulge, disc, and other fitted structural parameters. Moving (in the opposite direction) across the Hubble sequence, that is from the irregular to elliptical galaxies, we confirm that bulges become larger, more prominent, and round. Such bulge dominance is associated with a brighter radio core luminosity. We also find that the radio detection fraction increases with bulge mass. At M∗,bulge ≫ 1011 M⊙, the radio detection fraction is 77%, declining to 24% for M∗,bulge < 1010 M⊙. Furthermore, we observe that core-Sérsic bulges tend to be systematically round and to possess high radio core luminosities and boxy-distorted or pure elliptical isophotes. However, there is no evidence for the previously alleged strong tendency of galaxies'central structures (i.e. a sharp Sérsic, core-Sérsic dichotomy) with their radio loudness, isophote shape, and flattening.
  •  
7.
  • Jarvis, M.J., et al. (författare)
  • The discovery of a z = 0.7092 OH megamaser with the MIGHTEE survey
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:4, s. 3484-3494
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of the most distant OH megamaser (OHM) to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of z = 0.7092, the system has strong emission in both the 1665 MHz (L ≈ 2500 L-) and 1667 MHz (L ≈ 4.5 × 104 L-) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity v ∼330 km s-1 with respect to the systemic velocity. The host galaxy has a stellar mass of M = 2.95 × 1010 M- and a star formation rate of SFR = 371 M- yr-1, placing it ∼1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultraluminous infrared galaxy. Alongside the optical imaging data, which exhibit evidence for a tidal tail, this suggests that the OHM arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy's optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies.
  •  
8.
  • Combes, F., et al. (författare)
  • PKS 1830-211: OH and HI at z = 0.89 and the first MeerKAT UHF spectrum
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Survey Project (LSP) "MeerKAT Absorption Line Survey"(MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830-211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s-1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.
  •  
9.
  • Beswick, R. J., et al. (författare)
  • SKA studies of nearby galaxies: Star-formation, accretion processes and molecular gas across all environments
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • The SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with mJy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.
  •  
10.
  • Combes, Françoise, et al. (författare)
  • PKS 1413+135: OH and H i at z = 0.247 with MeerKAT
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The BL Lac object PKS 1413+135 was observed by the Large Survey Project MeerKAT Absorption Line Survey (MALS) in the L-band, at 1139 MHz and 12931379 MHz, targeting the HI and OH lines in absorption at z=0.24671. The radio continuum might come from the nucleus of the absorbing galaxy or from a background object at redshift lower than 0.5, as suggested by the absence of gravitational images. The HI absorption line is detected at a high signal-To-noise ratio, with a narrow central component, and with a red wing, confirming previous results. The OH 1720 MHz line is clearly detected in (maser) emission, peaking at a velocity shifted by-10 to-15 km s-1 with respect to the HI peak. The 1612 MHz line is lost due to radio frequency interference. The OH 1667 MHz main line is tentatively detected in absorption, but not the 1665 MHz line. Over 30 years a high variability is observed in optical depths, due to the rapid changes of the line of sight caused by the superluminal motions of the radio knots. The HI line has varied by 20% in depth, while the OH-1720 MHz depth has varied by a factor of ∼3. The position of the central velocity and the widths also varied. The absorbing galaxy is an early-Type spiral (maybe S0) seen edge-on, with a prominent dust lane, covering the whole disk. Given the measured mass concentration and the radio continuum size at centimeter wavelengths (100 mas corresponding to 400 pc at z=0.25), the width of the absorption lines from the nuclear regions are expected up to 250 km s-1. The narrowness of the observed lines (< 15 km s-1) suggests that the absorption comes from an outer gas ring, as frequently observed in S0 galaxies. The millimetric lines are even narrower (< 1 km s-1), which corresponds to the continuum size restricted to the core. The radio core is covered by individual 1 pc molecular clouds, whose column density is a few 1022 cm-2, which is compatible with the gas screen detected in X-rays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy