SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kloss Frank) "

Sökning: WFRF:(Kloss Frank)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Debette, Stéphanie, et al. (författare)
  • Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47, s. 78-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year)1. Minor cervical traumas, infection, migraine and hypertension are putative risk factors1–3, and inverse associations with obesity and hypercholesterolemia are described3,4. No confirmed genetic susceptibility factors have been identified using candidate gene approaches5. We performed genome-wide association studies (GWAS) in 1 1,393 CeAD cases and 1 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69–0.82; P = 4.46 × 1 10−10), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 1 × 1 10−3; combined P = 1 1.00 × 1 10−1111). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction6–9. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions.
  •  
2.
  • Kloss, Frank, et al. (författare)
  • The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation
  • 2008
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 29:16, s. 2433-2442
  • Tidskriftsartikel (refereegranskat)abstract
    • Medical implants are increasingly often inserted into bone of frail patients, who are advanced in years. Due to age, severe trauma or pathology-related bone changes, osseous healing at the implant site is frequently limited. We were able to demonstrate that coating of endosseous implants with nanocrystalline diamond (NCD) allows stable functionalization by means of physisorption with BMP-2. Strong physisorption was shown to be directly related to the unique properties of NCD, and BMP-2 in its active form interacted strongly when NCD was oxygen-terminated. The binding of the protein was monitored under physiological conditions by single molecule force spectroscopy, and the respective adsorption energies were further substantiated by force-field-calculations. Implant surfaces refined in such a manner yielded enhanced osseointegration in vivo, when inserted into sheep calvaria. Our results further suggest that this technical advancement can be readily applied in clinical therapies with regard to bone healing, since primary human mesenchymal stromal cells strongly activated the expression of osteogenic markers when being cultivated on NCD physisorbed with physiological amounts of BMP-2.
  •  
3.
  • Offermanns, Vincent, et al. (författare)
  • Effect of strontium surface-functionalized implants on early and late osseointegration: A histological, spectrometric and tomographic evaluation
  • 2018
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 69, s. 385-394
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy efficient sensing is one of the main objectives in the design of networked embedded monitoring systems. However, existing approaches such as duty cycling and ambient energy harvesting face challenges in railway bridge health monitoring applications due to the unpredictability of train passages and insufficient ambient energy around bridges. This paper presents ECOVIBE (Eco-friendly Vibration), an on-demand sensing system that automatically turns on itself when a train passes on the bridge and adaptively powers itself off after finishing all tasks. After that, it goes into an inactive state with near-zero power dissipation. ECOVIBE achieves these by: Firstly, a novel, fully passive event detection circuit to continuously detect passing trains without consuming any energy. Secondly, combining train-induced vibration energy harvesting with a transistor-based load switch, a tiny amount of energy is sufficient to keep ECOVIBE active for a long time. Thirdly, a passive adaptive off control circuit is introduced to quickly switch off ECOVIBE. Also this circuit does not consume any energy during inactivity periods. We present the prototype implementation of the proposed system using commercially available components and evaluate its performance in real-world scenarios. Our results show that ECOVIBE is effective in railway bridge health monitoring applications.
  •  
4.
  • Steinmüller-Nethl, Doris, et al. (författare)
  • Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption
  • 2006
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612. ; 27, s. 4547-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano-crystalline diamond (NCD)-coated surfaces were efficiently functionalized with bone morphogenetic protein-2 (BMP-2) by means of physisorption. Due to their randomly oriented texture, NCD-coated surfaces appear to bind complex molecules firmly. Applying various highly sensitive analytical methods, the interaction was found extremely stable. The strength of the experimentally measured adherence between BMP-2 and NCD was further corroborated by theoretical calculations. Oxygen treatment rendered NCD hydrophilic by the appearance of surface oxygen containing groups. This particular NCD surface exhibited even higher binding energies towards BMP-2 than the hydrophobic surface, and this surface was also favoured by cultured cells. Most importantly in this context, bound BMP-2 was found fully active. When cultured on BMP-2-treated NCD, osteosarcoma cells strongly up-regulated alkaline phosphatase, a specific marker for osteogenic differentiation. Hence, this simple method will allow generating highly versatile surfaces with complex biomimetic coatings, essentials for novel medical devices and implants as well as for innovative scaffolds in tissue engineering.
  •  
5.
  • Xing, Zhe, et al. (författare)
  • Biological Effects of Functionalizing Copolymer Scaffolds with Nanodiamond Particles
  • 2013
  • Ingår i: Tissue Engineering. Part A. - : Mary Ann Liebert. - 1937-3341 .- 1937-335X. ; 19:15-16, s. 1783-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant evidence has indicated that poly(L-lactide)-co-(epsilon-caprolactone) [(poly(LLA-co-CL)] scaffolds could be one of the suitable candidates for bone tissue engineering. Oxygen-terminated nanodiamond particles (n-DP) were combined with poly(LLA-co-CL) and revealed to be positive for cell growth. In this study, we evaluated the influence of poly(LLA-co-CL) scaffolds modified by n-DP on attachment, proliferation, differentiation of bone marrow stromal cells (BMSCs) in vitro, and on bone formation using a sheep calvarial defect model. BMSCs were seeded on either poly(LLA-co-CL)-or n-DP-coated scaffolds and incubated for 1 h. Scanning electron microscopy (SEM) and fluorescence microscopy were used in addition to protein and DNA measurements to evaluate cellular attachment on the scaffolds. To determine the effect of n-DP on proliferation of BMSCs, cell/scaffold constructs were harvested after 3 days and evaluated by Bicinchoninic Acid (BCA) protein assay and SEM. In addition, the osteogenic differentiation of cells grown for 2 weeks on the various scaffolds and in a dynamic culture condition was evaluated by real-time RT-PCR. Unmodified and modified scaffolds were implanted into the calvaria of six-year-old sheep. The expression of collagen type I (COL I) and bone morphogenetic protein-2 (BMP-2) after 4 weeks as well as the formation of new bone after 12 and 24 weeks were analyzed by immunohistochemistry and histology. Scaffolds modified with n-DP supported increased cell attachment and the mRNA expression of osteopontin (OPN), bone sialoprotein (BSP), and BMP-2 were significantly increased after 2 weeks of culture. The BMSCs had spread well on the various scaffolds investigated after 3 days in the study with no significant difference in cell proliferation. Furthermore, the in vivo data revealed more positive staining of COLI and BMP-2 in relation to the n-DP-coated scaffolds after 4 weeks and presented more bone formation after 12 and 24 weeks. n-DP modification significantly increased cell attachment and differentiation of BMSCs on poly(LLA-co-CL) scaffolds in vitro and enhanced bone formation in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy