SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knaapen Paul) "

Sökning: WFRF:(Knaapen Paul)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Danad, Ibrahim, et al. (författare)
  • Carotid artery intima-media thickness, but not coronary artery calcium, predicts coronary vascular resistance in patients evaluated for coronary artery disease
  • 2012
  • Ingår i: European Heart Journal: Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 13:4, s. 317-323
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims There is growing evidence that coronary artery disease (CAD) affects not only the conduit epicardial coronary arteries, but also the microvascular coronary bed. Moreover, coronary microvascular dysfunction (CMVD) often precedes the stage of clinically overt epicardial CAD. Coronary artery calcium (CAC) and carotid intima-media thickness (C-IMT) measured with computed tomography (CT) and ultrasound, respectively, are among the available techniques to non-invasively assess atherosclerotic burden. An increased CAC score and C-IMT have also been associated with CMVD. It is therefore of interest to explore and compare the potential of CAC against C-IMT to predict minimal coronary vascular resistance (CVR). Methods and results We evaluated 120 patients (mean age 56 +/- 9 years, 58 men) without a documented history of CAD in whom and results obstructive CAD was excluded. All patients underwent C-IMT measurements, CAC scoring, and vasodilator stress O-15-water positron emission tomography (PET)/CT, during which the coronary flow reserve (CFR) and minimal CVR were analysed. Minimal CVR increased significantly with increasing tertiles of C-IMT (22 +/- 6, 27 +/- 11, and 28 +/- 9 mmHg mL(-1) min(-1) g(-1), P < 0.01), whereas the CFR was comparable across all C-IMT groups (P = 0.50). Minimal CVR increased significantly with an increase in CAC score (23 +/- 9, 27 +/- 8, 32 +/- 10, and 32 +/- 7 mmHg mL(-1) min(-1) g(-1). P < 0.01), whereas the CFR did not show a significant decrease with higher CAC scores (P = 0.18). Multivariable regression analysis revealed that C-IMT (P = 0.03), but not CAC, was independently associated with minimal CVR. Conclusion C-IMT, but not CAC score, independently predicts minimal CVR in patients with multiple cardiovascular risk factors and suspected of CAD.
  •  
2.
  • Danad, Ibrahim, et al. (författare)
  • Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease : a quantitative [15O]H2O PET/CT study
  • 2012
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:1, s. 102-112
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThere has been increasing interest in quantitative myocardial blood flow (MBF) imaging over the last years and it is expected to become a routinely used technique in clinical practice. Positron emission tomography (PET) using [15O]H2O is the established gold standard for quantification of MBF in vivo. A fundamental issue when performing quantitative MBF imaging is to define the limits of MBF in a clinically suitable population. The aims of the present study were to determine the limits of MBF and to determine the relationship among coronary artery disease (CAD) risk factors, gender and MBF in a predominantly symptomatic patient cohort without significant CAD.MethodsA total of 128 patients (mean age 54 ± 10 years, 50 men) with a low to intermediate pretest likelihood of CAD were referred for noninvasive evaluation of CAD using a hybrid PET/computed tomography (PET/CT) scanner. MBF was quantified with [15O]H2O at rest and during adenosine-induced hyperaemia. Obstructive CAD was excluded in these patients by means of invasive or CT-based coronary angiography.ResultsGlobal average baseline MBF values were 0.91 ± 0.34 and 1.09 ± 0.30  ml·min−1·g−1 (range 0.54–2.35  and 0.59–2.75 ml·min−1·g−1) in men and women, respectively (p < 0.01). However, no gender-dependent difference in baseline MBF was seen following correction for rate–pressure product (0.98 ± 0.45 and 1.09 ± 0.30 ml·min−1·g−1 in men and women, respectively; p = 0.08). Global average hyperaemic MBF values were 3.44 ± 1.20 ml·min−1·g−1 in the whole study population, and 2.90 ± 0.85 and 3.78 ± 1.27 ml·min−1·g−1 (range 1.52–5.22 and 1.72–8.15 ml·min−1·g−1) in men and women, respectively (p < 0.001). Multivariate analysis identified male gender, age and body mass index as having an independently negative impact on hyperaemic MBF.ConclusionGender, age and body mass index substantially influence reference values and should be corrected for when interpreting hyperaemic MBF values.
  •  
3.
  • Danad, Ibrahim, et al. (författare)
  • Effect of cardiac hybrid O-15-water PET/CT imaging on downstream referral for invasive coronary angiography and revascularization rate
  • 2014
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 15:2, s. 170-179
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluates the impact of hybrid imaging on referral for invasive coronary angiography (ICA) and revascularization rates. A total of 375 patients underwent hybrid O-15-water positron emission tomography (PET)/computed tomography (CT)-based coronary angiography (CTCA) imaging for the evaluation of coronary artery disease (CAD). Downstream treatment strategy within a 60-day period after hybrid PET/CTCA imaging for ICA referral and revascularization was assessed. CTCA examinations were classified as showing no (obstructive) CAD, equivocal (borderline test result), or obstructive CAD, while the PET perfusion images were classified into normal or abnormal. On the basis of CTCA imaging, 182 (49) patients displayed no (obstructive) CAD. Only 10 (5) patients who showed no (obstructive) CAD on CTCA were referred for ICA, which were all negative. An equivocal CT study was observed in 80 (21) patients, among whom 56 (70) showed normal myocardial perfusion imaging (MPI), resulting in referral rates for ICA of 18 for normal MPI and 71 for abnormal MPI, respectively. No revascularizations were performed in the presence of normal MPI, while 59 of those with abnormal MPI were revascularized. CTCA indentified obstructive CAD in 113 (30) patients accompanied in 59 (52) patients with abnormal MPI. Referral rate for ICA was 57 for normal MPI and 88 for those with abnormal MPI, resulting in revascularization rates of 26 and 72, respectively. Hybrid O-15-water PET/CTCA imaging impacts clinical decision-making with regard to referral for ICA and revascularization procedures. Particularly, in the presence of an equivocal or abnormal CTCA, MPI could guide in the decision to refer for ICA and revascularization.
  •  
4.
  • Danad, Ibrahim, et al. (författare)
  • Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient : a [O-15]H2O PET study
  • 2014
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 35:31, s. 2094-U149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Myocardial ischaemia occurs principally in the subendocardial layer, whereas conventional myocardial perfusion imaging provides no information on the transmural myocardial blood flow (MBF) distribution. Subendocardial perfusion measurements and quantification of the transmural perfusion gradient (TPG) could be more sensitive and specific for the detection of coronary artery disease (CAD). The current study aimed to determine the impact of lesion severity as assessed by the fractional flow reserve (FFR) on subendocardial perfusion and the TPG using [O-15]H2O positron emission tomography (PET) imaging in patients evaluated for CAD. Methods and results Sixty-six patients with anginal chest pain were prospectively enrolled and underwent [O-15] H2O myocardial perfusion PET imaging. Subsequently, invasive coronary angiography was performed and FFR obtained in all coronary arteries irrespective of the PET imaging results. Thirty (45%) patients were diagnosed with significant CAD(i.e. FFR <= 0.80), whereas on a per vessel analysis (n = 198), 53 (27%) displayed a positive FFR. Transmural hyperaemic MBF decreased significantly from 3.09 +/- 1.16 to 1.67 +/- 0.57 mL min(-1) g(-1) (P < 0.001) in non-ischaemic and ischaemic myocardium, respectively. The TPG decreased during hyperaemia when compared with baseline (1.20 +/- 0.14 vs. 0.94 +/- 0.17, P < 0.001), and was lower in arteries with a positive FFR (0.97 +/- 0.16 vs. 0.88 +/- 0.18, P < 0.01). ATPG threshold of 0.94 yielded an accuracy to detect CAD of 59%, which was inferior to transmural MBF with an optimal cutoff of 2.20 mL min(-1) g(-1) and an accuracy of 85% (P < 0.001). Diagnostic accuracy of subendocardial perfusion measurements was comparable with transmural MBF (83 vs. 85%, respectively, P = NS). Conclusion Cardiac [O-15]H2O PET imaging is able to distinguish subendocardial from subepicardial perfusion in the myocardium of normal dimensions. Hyperaemic TPG is significantly lower in ischaemic myocardium. This technique can potentially be employed to study subendocardial perfusion impairment in more detail. However, the diagnostic accuracy of subendocardial hyperaemic perfusion and TPG appears to be limited compared with quantitative transmural MBF, warranting further study.
  •  
5.
  • Danad, Ibrahim, et al. (författare)
  • Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease Cutoff Values and Diagnostic Accuracy of Quantitative [O-15]H2O PET Imaging
  • 2014
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 64:14, s. 1464-1475
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Recent studies have demonstrated improved diagnostic accuracy for detecting coronary artery disease (CAD) when myocardial blood flow (MBF) is quantified in absolute terms, but there are no uniformly accepted cutoff values for hemodynamically significant CAD. OBJECTIVES The goal of this study was to determine cutoff values for absolute MBF and to evaluate the diagnostic accuracy of quantitative [O-15]H2O positron emission tomography (PET). METHODS A total of 330 patients underwent both quantitative [O-15]H2O PET imaging and invasive coronary angiography in conjunction with fractional flow reserve measurements. A stenosis >90% and/or fractional flow reserve <= 0.80 was considered obstructive; a stenosis <30% and/or fractional flow reserve >0.80 was nonobstructive. RESULTS Hemodynamically significant CAD was diagnosed in 116 (41%) of 281 patients who fulfilled study criteria for CAD. Resting perfusion was 1.00 +/- 0.25 and 0.92 +/- 0.23 ml/min/g in regions supplied by nonstenotic and significantly stenosed vessels, respectively (p < 0.001). During stress, perfusion increased to 3.26 +/- 1.04 ml/min/g and 1.73 +/- 0.67 ml/min/g, respectively (p < 0.001). The optimal cutoff values were 2.3 and 2.5 for hyperemic MBF and myocardial flow reserve, respectively. For MBF, these cutoff values showed a sensitivity, specificity, and accuracy for detecting significant CAD of 89%, 84%, and 86%, respectively, at a per-patient level and 87%, 85%, and 85% at a per-vessel level. The corresponding myocardial flow reserve values were 86%, 72%, and 78% (per patient) and 80%, 82%, and 81% (per vessel). Age and sex significantly affected diagnostic accuracy of quantitative PET. CONCLUSIONS Quantitative MBF measurements with the use of [O-15]H2O PET provided high diagnostic performance, but both sex and age should be taken into account.
  •  
6.
  •  
7.
  • de Haan, Stefan, et al. (författare)
  • Parametric imaging of myocardial viability using ¹⁵O-labelled water and PET/CT : comparison with late gadolinium-enhanced CMR
  • 2012
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:8, s. 1240-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe perfusable tissue index (PTI) is a marker of myocardial viability. Recent technological advances have made it possible to generate parametric PTI images from a single [15O]H2O PET/CT scan. The purpose of this study was to validate these parametric PTI images.MethodsThe study population comprised 46 patients with documented or suspected coronary artery disease who were studied with [15O]H2O PET and late gadolinium-enhanced (LGE) cardiac magnetic resonance imaging (CMR).ResultsOf the 736 myocardial segments included, 364 showed some degree of LGE. PTI and perfusable tissue fraction (PTF) diminished with increasing LGE. The areas under the curve of the PTI and PTF, used to predict (near) transmural LGE on CMR, were 0.86 and 0.87, respectively. Optimal sensitivity and specificity were 91 % and 73 % for PTI and 69 % and 87 % for PTF, respectively.ConclusionPTI and PTF assessed with a single [15O]H2O scan can be utilized as markers of myocardial viability in patients with coronary artery disease.
  •  
8.
  • Dewey, Marc, et al. (författare)
  • Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia
  • 2020
  • Ingår i: Nature Reviews Cardiology. - : Springer Nature. - 1759-5002 .- 1759-5010. ; 17:7, s. 427-450
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
  •  
9.
  • Harms, Hendrik J., et al. (författare)
  • Noninvasive Quantification of Myocardial C-11-Meta-Hydroxyephedrine Kinetics
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:9, s. 1376-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • C-11-meta-hydroxyephedrine (C-11-HED) kinetics in the myocardium can be quantified using a single-tissue-compartment model together with a metabolite-corrected arterial blood sampler input function (BSIF). The need for arterial blood sampling, however, limits clinical applicability. The purpose of this study was to investigate the feasibility of replacing arterial sampling with imaging-derived input function (IDIF) and venous blood samples. Methods: Twenty patients underwent 60-min dynamic C-11-HED PET/CT scans with online arterial blood sampling. Thirteen of these patients also underwent venous blood sampling. Data were reconstructed using both 3 dimensional row-action maximum-likelihood algorithm (3DR) and a time-of-flight (TF) list-mode reconstruction algorithm. For each reconstruction, IDIF results were compared with BSIF results. In addition, IDIF results obtained with venous blood samples and with a transformed venous-to-arterial metabolite correction were compared with results obtained with arterial metabolite corrections. Results: Correlations between IDIF- and BSIF-derived K-1 and V-T were high (r(2) > =0.89 for 3DR and TF). Slopes of the linear fits were significantly different from 1 for K-1, for both 3DR (slope = 0.94) and TF (slope = 1.06). For V-T, the slope of the linear fit was different from 1 for TF (slope = 0.93) but not for 3DR (slope = 0.98). Use of venous blood data introduced a large bias in V-T (r(2) = 0.96, slope = 0.84) and a small bias in K-1 (r(2) = 0.99, slope = 0.98). Use of a second-order polynomial venous-to-arterial transformation was robust and greatly reduced bias in V-T (r(2) = 0.97, slope = 0.99) with no effect on K-1. Conclusion: IDIF yielded precise results for both 3DR and TF. Venous blood samples can be used for absolute quantification of C-11-HED studies, provided a venous-to-arterial transformation is applied. A venous-to-arterial transformation enables noninvasive, absolute quantification of C-11-HED studies.
  •  
10.
  • Harms, Hendrik J, et al. (författare)
  • Parametric Images of Myocardial Viability Using a Single 15O-H2O PET/CT Scan
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:5, s. 745-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Perfusable tissue index (PTI) is a marker of myocardial viability and requires acquisition of transmission, 15O-CO, and 15O-H2O scans. The aim of this study was to generate parametric PTI images from a 15O-H2O PET/CT scan without an additional 15O-CO scan.Methods:Data from 20 patients undergoing both 15O-H2O and 15O-CO scans were used, assessing correlation between PTI based on 15O-CO (PTICO) and on fitted blood volume fractions (PTIVb). In addition, parametric PTIVb images of 10 patients undergoing 15O-H2O PET/CT scans were generated using basis-function methods and compared with PTIVb obtained using nonlinear regression. Simulations were performed to study the effects of noise on PTIVb.Results:Correlation between PTICO and PTIVb was high (r2 = 0.73). Parametric PTIVb correlated well with PTIVb obtained using nonlinear regression (r2 = 0.91). Simulations showed low sensitivity to noise (coefficient of variation < 10% at 20% noise).Conclusion:Parametric PTI images can be generated from a single 15O-H2O PET/CT scan.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy