SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knorr D) "

Sökning: WFRF:(Knorr D)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Acosta, R. P., et al. (författare)
  • A Model-Data Comparison of the Hydrological Response to Miocene Warmth : Leveraging the MioMIP1 Opportunistic Multi-Model Ensemble
  • 2024
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene (23.03-5.33 Ma) is recognized as a period with close to modern-day paleogeography, yet a much warmer climate. With large uncertainties in future hydroclimate projections, Miocene conditions illustrate a potential future analog for the Earth system. A recent opportunistic Miocene Model Intercomparison Project 1 (MioMIP1) focused on synthesizing published Miocene climate simulations and comparing them with available temperature reconstructions. Here, we build on this effort by analyzing the hydrological cycle response to Miocene forcings across early-to-middle (E2MMIO; 20.03-11.6 Ma) and middle-to-late Miocene (M2LMIO; 11.5-5.33 Ma) simulations with CO2 concentrations ranging from 200 to 850 ppm and providing a model-data comparison against available precipitation reconstructions. We find global precipitation increases by similar to 2.1 and 2.3% per degree of warming for E2MMIO and M2LMIO simulations, respectively. Models generally agree on a wetter than modern-day tropics; mid and high-latitude, however, do not agree on the sign of subtropical precipitation changes with warming. Global monsoon analysis suggests most monsoon regions, except the North American Monsoon, experience higher precipitation rates under warmer conditions. Model-data comparison shows that mean annual precipitation is underestimated by the models regardless of CO2 concentration, particularly in the mid- to high-latitudes. This suggests that the models may not be (a) resolving key processes driving the hydrological cycle response to Miocene boundary conditions and/or (b) other boundary conditions or processes not considered here are critical to reproducing Miocene hydroclimate. This study highlights the challenges in modeling and reconstructing the Miocene hydrological cycle and serves as a baseline for future coordinated MioMIP efforts. This study looks at Earth's hydrological cycle during the Miocene (23-5 million years ago). During this period, the Earth's climate was 3-7 degrees C warmer than today, with carbon dioxide (CO2) estimates ranging between 400 and 850 ppm. Understanding how the hydrological cycle responded during warmer climate conditions can give us insight into what might happen as the Earth gets warmer. We analyzed a suite of Miocene paleoclimate simulations with different CO2 concentrations in the atmosphere and compared them against fossil plant data, which gives an estimate of the average annual rainfall during the period. We found that during the Miocene global rainfall increased by about 2.1%-2.3% for each degree of warming. The models agree that the tropics, mid- and high-latitude, became wetter than they are today but have lower agreement on whether subtropical areas got wetter or drier as they warmed. Compared to proxies, models consistently underestimated how much rain fell in a year, especially in the mid- to high-latitude. This illustrates the challenges in reconstructing the Miocene's hydrological cycle and suggests that the models might not fully capture the range of uncertainties associated with changes in the hydrological cycle due to warming or other factors that differentiated the Miocene. A multi-model comparison of the hydrological cycle in early-to-middle and middle-to-late Miocene simulations is conductedModels generally agree on wetter than modern tropics, middle and high latitudes, but not on the sign of subtropical precipitation changesModel-data comparison shows mean annual precipitation is underestimated by the models, particularly in the mid- to high-latitudes
  •  
4.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene : the Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned towards modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval – the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analogue for future climate scenarios, and for assessing the predictive accuracy of numerical climate models – the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re‐interpretation of proxies, which might mitigate the model‐data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here we review the state‐of‐the‐art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modelling studies.
  •  
5.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene: The Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies.
  •  
6.
  • Burls, N. J., et al. (författare)
  • Simulating Miocene Warmth : Insights From an Opportunistic Multi-Model Ensemble (MioMIP1)
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 36:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch, spanning 23.03-5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75-14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography and ice sheets, raise global mean temperature by similar to 2 degrees C, with the spread in warming under a given CO2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to similar to 1.2 times a CO2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.
  •  
7.
  • Adamashvili, G. T., et al. (författare)
  • Influence of non-Markovian relaxation processes on self-induced transparency: Memory function theory for optical solitons
  • 2008
  • Ingår i: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 78:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of transverse relaxation on the resonance soliton (2 pi hyperbolic-secant pulse) in solids is considered. It is shown that memory effects can be considered in terms of generalized non-Markovian optical Bloch equations. The equations of self-induced transparency with a memory function are presented. Explicit forms for the first-order effects of this relaxation on the frequency shift and the pulse height of a resonant 2 pi soliton in solids are given and discussed. It is shown that memory effects do lead to a qualitative change in the dynamics of the influence of transverse relaxations on a 2 pi pulse in comparison to the McCall-Hahn theory and others. The dynamics of the changes of the inverse width of the pulse are obtained in both the Markovian and the non-Markovian cases with realistic parameters that can be achieved in current experiments.
  •  
8.
  •  
9.
  • Christiansen, D., et al. (författare)
  • Phonon Sidebands in Monolayer Transition Metal Dichalcogenides
  • 2017
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 119:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient exciton-phonon scattering couples bright and dark states and gives rise to an asymmetric excitonic line shape. The observed asymmetry can be traced back to phonon-induced sidebands that are accompanied by a polaron redshift. We present a joint theory-experiment study investigating the microscopic origin of these sidebands in different TMD materials taking into account intra and intervalley scattering channels opened by optical and acoustic phonons. The gained insights contribute to a better understanding of the optical fingerprint of these technologically promising nanomaterials.
  •  
10.
  • Dong, Shuo, et al. (författare)
  • Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (18)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Knorr, A. (5)
Huber, M. (4)
Burls, N. J. (4)
Bradshaw, C. D. (4)
Lunt, D. J. (4)
Knorr, G. (4)
visa fler...
Malic, Ermin, 1980 (4)
Knorr, D (4)
Zhang, Z. (3)
Li, X. (3)
Pound, M. J. (3)
Gasson, E. (3)
Lear, C. H. (3)
Knorr, Wolfgang (3)
Liu, X (2)
Liu, Y. (2)
Ali, M (2)
Singh, A (2)
Herold, N (2)
Wang, P. (2)
Lee, JY (2)
de Boer, Agatha M. (2)
Donnadieu, Y. (2)
Farnsworth, A. (2)
Frigola, A. (2)
von der Heydt, A. S. (2)
Lohmann, G. (2)
Marzocchi, A. (2)
Prange, M. (2)
Sarr, A. C. (2)
Mora, M (2)
Chen, LL (2)
Ahrné, Lilia (2)
Staack, N. (2)
Jakobsson, J. (2)
Steinthorsdottir, Ma ... (2)
Borch, Elisabeth (2)
Scholze, Marko (2)
Watanabe, Kenji (2)
Taniguchi, Takashi (2)
Brem, Samuel, 1991 (2)
Berghäuser, Gunnar, ... (2)
Selig, M. (2)
Ziegler, Jonas D. (2)
Negoita, F. (2)
Lu, JJ (2)
Kiel, S. (2)
Feakins, S. J. (2)
Pircs, K. (2)
Pearson, P. N. (2)
visa färre...
Lärosäte
Lunds universitet (6)
Stockholms universitet (5)
Chalmers tekniska högskola (4)
RISE (4)
Uppsala universitet (2)
Karolinska Institutet (2)
visa fler...
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Lantbruksvetenskap (3)
Teknik (2)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy