SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knutsson Hans Associate Professor) "

Sökning: WFRF:(Knutsson Hans Associate Professor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cros, Olivier, 1975- (författare)
  • Image Analysis and Visualization of the Human Mastoid Air Cell System
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • From an engineering background, it is often believed that the human anatomy has already been fully described. Radiology has greatly contributed to understand the inside of the human body without surgical intervention. Despite great advances in clinical CT scanning, image quality is still related to a limited amount X-ray exposure for the patient safety. This limitation prevents fine anatomical structures to be visible and, more importantly, to be detected. Where such modality is of great advantage for screening patients, extracting parameters like surface area and volume implies the bone structure to be large enough in relation to the scan resolution.The mastoid, located in the temporal bone, houses an air cell system whose cells have a variation in size that can go far below current conventional clinical CT scanner resolution. Therefore, the mastoid air cell system is only partially represented on a CT scan. Any statistical analysis will be biased towards air cells of smaller size. To allow a complete representation of the mastoid air cell system, a micro-CT scanner is more adequate. Micro-CT scanning uses approximately the same amount of X-rays but for a much longer exposure time compared to what is normally allowed for patients. Human temporal bone specimens are therefore necessary when using such scanning method. Where the conventional clinical CT scanner lacks level of minutes details, micro-CT scanning provides an overwhelming amount of fine details.Prior to any image analysis of medical data, visualization of the data is often needed to learn how to extract the structures of interest for further processing. Visualization of micro-CT scans is of no exception. Due to the high resolution nature of the data, visualization of such data not only requires modern and powerful computers, but also necessitates a tremendous amount of time to adjust the hiding of irrelevant structures, to find the correct orientation, while emphasising the structure of interest. Once the quality of the data has been assessed, and a strategy for the image processing has been decided, the image processing can start, to in turn extract metrics such as the surface area or volume and draw statistics from it. The temporal bone being one of the most complex in the human body, visualization of micro-CT scanning of this bone awakens the curiosity of the experimenter, especially with the correct visualization settings.This thesis first presents a statistical analysis determining the surface area to volume ratio of the mastoid air cell system of human temporal bone, from micro-CT scanning using methods previously applied for conventional clinical CT scannings. The study compared current resul s with previous studies, with successive downsampling the data down to a resolution found in conventional clinical CT scanning. The results from the statistical analysis showed that all the small mastoid air cells, that cannot be detected in conventional clinical CT scans, do heavily contribute to the estimation of the surface area, and in consequence to the estimation of the surface area to volume ratio by a factor of about 2.6. Such a result further strengthens the idea of the mastoid to play an active role in pressure regulation and gas exchange.Discovery of micro-channels through specific use of a non-traditional transfer function was then reported, where a qualitative and a quantitative preanalysis was performed are described. To gain more knowledge about these micro-channels, a local structure tensor analysis was applied where structures are described in terms of planar, tubular, or isotropic structures. The results from this structural tensor analysis, also reported in this thesis, suggest these micro-channels to potentially be part of a more complex framework, which hypothetically would provide a separate blood supply for the mucosa lining the mastoid air cell system.
  •  
2.
  • Landelius, Tomas (författare)
  • Behavior Representation by Growing a Learning Tree
  • 1993
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work presented in this thesis is based on the basic idea of learning by reinforcement, within the theory of behaviorism. The reason for this choice is the generality of such an approach, especially that the reinforcement learning paradigm allows systems to be designed which can improve their behavior beyond that of their teacher. The role of the teacher is to define the reinforcement function, which acts as a description of the problem the machine is to solve.Learning is considered to be a bootstrapping procedure. Fragmented past experience, of what to do when performing well, is used for response generation. The new response, in its turn, adds more information to the system about the environment. Gained knowledge is represented by a behavior probability density function. This density function is approximated with a number of normal distributions which are stored in the nodes of a binary tree. The tree structure is grown by applying a recursive algorithm to the stored stimuli-response combinations, called decisions. By considering both the response and the stimulus, the system is able to bring meaning to structures in the input signal. The recursive algorithm is first applied to the whole set of stored decisions. A mean decision vector and a covariance matrix are calculated and stored in the root node. The decision space is then partitioned into two halves across the direction of maximal data variation. This procedure is now repeated recursively for each of the two halves of the decision space, forming a binary tree with mean vectors and covariance matrices in its nodes.The tree is the system's guide to response generation. Given a stimulus, the system searches for responses likely to result in highly reinforced decisions. This is accomplished by treating the sum of the normal distributions in the leaves as distribution describing the behavior of the system. The sum of normal distributions, with the current stimulus held fixed, is finally used for random generation of the response.This procedure makes it possible for the system to have several equally plausible responses to one stimulus. Not applying maximum likelihood principles will make the system more explorative and reduce its risk of being trapped in local minima.The performance and complexity of the learning tree is investigated and compared to some well known alternative methods. Presented are also some simple, yet principally important, experiments verifying the behavior of the proposed algorithm.
  •  
3.
  • Svensson, Björn, 1979- (författare)
  • A Multidimensional Filtering Framework with Applications to Local Structure Analysis and Image Enhancement
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Filtering is a fundamental operation in image science in general and in medical image science in particular. The most central applications are image enhancement, registration, segmentation and feature extraction. Even though these applications involve non-linear processing a majority of the methodologies available rely on initial estimates using linear filters. Linear filtering is a well established cornerstone of signal processing, which is reflected by the overwhelming amount of literature on finite impulse response filters and their design.Standard techniques for multidimensional filtering are computationally intense. This leads to either a long computation time or a performance loss caused by approximations made in order to increase the computational efficiency. This dissertation presents a framework for realization of efficient multidimensional filters. A weighted least squares design criterion ensures preservation of the performance and the two techniques called filter networks and sub-filter sequences significantly reduce the computational demand.A filter network is a realization of a set of filters, which are decomposed into a structure of sparse sub-filters each with a low number of coefficients. Sparsity is here a key property to reduce the number of floating point operations required for filtering. Also, the network structure is important for efficiency, since it determines how the sub-filters contribute to several output nodes, allowing reduction or elimination of redundant computations.Filter networks, which is the main contribution of this dissertation, has many potential applications. The primary target of the research presented here has been local structure analysis and image enhancement. A filter network realization for local structure analysis in 3D shows a computational gain, in terms of multiplications required, which can exceed a factor 70 compared to standard convolution. For comparison, this filter network requires approximately the same amount of multiplications per signal sample as a single 2D filter. These results are purely algorithmic and are not in conflict with the use of hardware acceleration techniques such as parallel processing or graphics processing units (GPU). To get a flavor of the computation time required, a prototype implementation which makes use of filter networks carries out image enhancement in 3D, involving the computation of 16 filter responses, at an approximate speed of 1MVoxel/s on a standard PC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy