SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knyazeva MG) "

Sökning: WFRF:(Knyazeva MG)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Kiper, DC, et al. (författare)
  • Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets
  • 1999
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 82:6, s. 3082-3094
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the analysis of the coherence between signals recorded from the scalp [electroencephalographic (EEG) coherence] has been used to assess the functional properties of cortico-cortical connections, both in animal models and in humans. However, the experimental validation of this technique is still scarce. Therefore we applied it to the study of the callosal connections between the visual areas of the two hemispheres, because this particular set of cortico-cortical connections can be activated in a selective way by visual stimuli. Indeed, in primary and in low-order secondary visual areas, callosal axons interconnect selectively regions, which represent a narrow portion of the visual field straddling the vertical meridian and, within these regions, neurons that prefer the same stimulus orientation. Thus only isooriented stimuli located near the vertical meridian are expected to change interhemispheric coherence by activating callosal connections. Finally, if such changes are found and are indeed mediated by callosal connections, they should disappear after transection of the corpus callosum. We perfomed experiments on seven paralyzed and anesthetized ferrets, recording their cortical activity with epidural electrodes on areas 17/18, 19, and lateral suprasylvian, during different forms of visual stimulation. As expected, we found that bilateral iso-oriented stimuli near the vertical meridian, or extending across it, caused a significant increase in interhemispheric coherence in the EEG beta-gamma band. Stimuli with different orientations, stimuli located far from the vertical meridian, as well as unilateral stimuli failed to affect interhemispheric EEG coherence. The stimulus-induced increase in coherence disappeared after surgical transection of the corpus callosum. The results suggest that the activation of cortico-cortical connections can indeed be revealed as a change in EEG coherence. The latter can therefore be validly used to investigate the functionality of cortico-cortical connections.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Knyazeva, MG, et al. (författare)
  • Visual stimulus-dependent changes in interhemispheric EEG coherence in humans
  • 1999
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 82:6, s. 3095-3107
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed the coherence of electroencephalographic (EEG) signals recorded symmetrically from the two hemispheres, while subjects ( n = 9) were viewing visual stimuli. Considering the many common features of the callosal connectivity in mammals, we expected that, as in our animal studies, interhemispheric coherence (ICoh) would increase only with bilateral iso-oriented gratings located close to the vertical meridian of the visual field, or extending across it. Indeed, a single grating that extended across the vertical meridian significantly increased the EEG ICoh in normal adult subjects. These ICoh responses were obtained from occipital and parietal derivations and were restricted to the gamma frequency band. They were detectable with different EEG references and were robust across and within subjects. Other unilateral and bilateral stimuli, including identical gratings that were effective in anesthetized animals, did not affect ICoh in humans. This fact suggests the existence of regulatory influences, possibly of a top-down kind, on the pattern of callosal activation in conscious human subjects. In addition to establishing the validity of EEG coherence analysis for assaying cortico-cortical connectivity, this study extends to the human brain the finding that visual stimuli cause interhemispheric synchronization, particularly in frequencies of the gamma band. It also indicates that the synchronization is carried out by cortico-cortical connection and suggests similarities in the organization of visual callosal connections in animals and in man.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy