SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kocan Martina) "

Sökning: WFRF:(Kocan Martina)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bobcakova, Anna, et al. (författare)
  • Activated CD8+CD38+ Cells Are Associated With Worse Clinical Outcome in Hospitalized COVID-19 Patients
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that spread around the world during the past 2 years, has infected more than 260 million people worldwide and has imposed an important burden on the healthcare system. Several risk factors associated with unfavorable outcome were identified, including elderly age, selected comorbidities, immune suppression as well as laboratory markers. The role of immune system in the pathophysiology of SARS-CoV-2 infection is indisputable: while an appropriate function of the immune system is important for a rapid clearance of the virus, progression to the severe and critical phases of the disease is related to an exaggerated immune response associated with a cytokine storm. We analyzed differences and longitudinal changes in selected immune parameters in 823 adult COVID-19 patients hospitalized in the Martin University Hospital, Martin, Slovakia. Examined parameters included the differential blood cell counts, various parameters of cellular and humoral immunity (serum concentration of immunoglobulins, C4 and C3), lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, NK cells, CD4+CD45RO+), expression of activation (HLA-DR, CD38) and inhibition markers (CD159/NKG2A). Besides already known changes in the differential blood cell counts and basic lymphocyte subsets, we found significantly higher proportion of CD8+CD38+ cells and significantly lower proportion of CD8+NKG2A+ and NK NKG2A+ cells on admission in non-survivors, compared to survivors; recovery in survivors was associated with a significant increase in the expression of HLA-DR and with a significant decrease of the proportion of CD8+CD38+cells. Furthermore, patients with fatal outcome had significantly lower concentrations of C3 and IgM on admission. However, none of the examined parameters had sufficient sensitivity or specificity to be considered a biomarker of fatal outcome. Understanding the dynamic changes in immune profile of COVID-19 patients may help us to better understand the pathophysiology of the disease, potentially improve management of hospitalized patients and enable proper timing and selection of immunomodulator drugs.
  •  
2.
  • Bobcakova, Anna, et al. (författare)
  • Immune Profile in Patients With COVID-19 : Lymphocytes Exhaustion Markers in Relationship to Clinical Outcome
  • 2021
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The velocity of the COVID-19 pandemic spread and the variable severity of the disease course has forced scientists to search for potential predictors of the disease outcome. We examined various immune parameters including the markers of immune cells exhaustion and activation in 21 patients with COVID-19 disease hospitalised in our hospital during the first wave of the COVID-19 pandemic in Slovakia. The results showed significant progressive lymphopenia and depletion of lymphocyte subsets (CD3+, CD4+, CD8+ and CD19+) in correlation to the disease severity. Clinical recovery was associated with significant increase in CD3+ and CD3+CD4+ T-cells. Most of our patients had eosinopenia on admission, although no significant differences were seen among groups with different disease severity. Non-survivors, when compared to survivors, had significantly increased expression of PD-1 on CD4+ and CD8+ cells, but no significant difference in Tim-3 expression was observed, what suggests possible reversibility of immune paralysis in the most severe group of patients. During recovery, the expression of Tim-3 on both CD3+CD4+ and CD3+CD8+ cells significantly decreased. Moreover, patients with fatal outcome had significantly higher proportion of CD38+CD8+ cells and lower proportion of CD38+HLA-DR+CD8+ cells on admission. Clinical recovery was associated with significant decrease of proportion of CD38+CD8+ cells. The highest AUC values within univariate and multivariate logistic regression were achieved for expression of CD38 on CD8+ cells and expression of PD1 on CD4+ cells alone or combined, what suggests, that these parameters could be used as potential biomarkers of poor outcome. The assessment of immune markers could help in predicting outcome and disease severity in COVID-19 patients. Our observations suggest, that apart from the degree of depletion of total lymphocytes and lymphocytes subsets, increased expression of CD38 on CD3+CD8+ cells alone or combined with increased expression of PD-1 on CD3+CD4+ cells, should be regarded as a risk factor of an unfavourable outcome in COVID-19 patients. Increased expression of PD-1 in the absence of an increased expression of Tim-3 on CD3+CD4+ and CD3+CD8+ cells suggests potential reversibility of ongoing immune paralysis in patients with the most severe course of COVID-19.
  •  
3.
  • Dehvari, Nodi, et al. (författare)
  • β2‐Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C‐terminal tail
  • 2012
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 165:5, s. 1442-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSEbeta-Adrenoceptor stimulation induces glucose uptake in several insulin-sensitive tissues by poorly understood mechanisms.EXPERIMENTAL APPROACHWe used a model system in CHO-K1 cells expressing the human beta(2)-adrenoceptor and glucose transporter 4 (GLUT4) to investigate the signalling mechanisms involved.KEY RESULTSIn CHO-K1 cells, there was no response to b-adrenoceptor agonists. The introduction of b2-adrenoceptors and GLUT4 into these cells caused increased glucose uptake in response to beta-adrenoceptor agonists. GLUT4 translocation occurred in response to insulin and beta(2)-adrenoceptor stimulation, although the key insulin signalling intermediate PKB was not phosphorylated in response to beta(2)-adrenoceptor stimulation. Truncation of the C-terminus of the beta(2)-adrenoceptor at position 349 to remove known phosphorylation sites for GPCR kinases (GRKs) or at position 344 to remove an additional PKA site together with the GRK phosphorylation sites did not significantly affect cAMP accumulation but decreased beta(2)-adrenoceptor-stimulated glucose uptake. Furthermore, inhibition of GRK by transfection of the bARKct construct inhibited beta(2)-adrenoceptor-mediated glucose uptake and GLUT4 translocation, and overexpression of a kinase-dead GRK2 mutant (GRK2 K220R) also inhibited GLUT4 translocation. Introducing beta(2)-adrenoceptors lacking phosphorylation sites for GRK or PKA demonstrated that the GRK sites, but not the PKA sites, were necessary for GLUT4 translocation.CONCLUSIONS AND IMPLICATIONSGlucose uptake in response to activation of beta(2)-adrenoceptors involves translocation of GLUT4 in this model system. The mechanism is dependent on the C-terminus of the beta(2)-adrenoceptor, requires GRK phosphorylation sites, and involves a signalling pathway distinct from that stimulated by insulin.
  •  
4.
  • Mukaida, Saori, et al. (författare)
  • BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via beta(2)-adrenoceptors without causing classical receptor desensitization
  • 2019
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 316:5, s. R666-R677
  • Tidskriftsartikel (refereegranskat)abstract
    • The type 2 diabetes epidemic makes it important to find insulinin-dependent ways to improve glucose homeostasis. This study examines the mechanisms activated by a dual beta(2)-/beta(3)-adrenoceptor agonist, BRL37344, to increase glucose uptake in skeletal muscle and its effects on glucose homeostasis in vivo. We measured the effect of BRL37344 on glucose uptake, glucose transporter 4 (GLUT4) translocation, cAMP levels, beta(2)-adrenoceptor desensitization, beta-arrestin recruitment, Akt, AMPK, and mammalian target of rapamycin (mTOR) phosphorylation using L6 skeletal muscle cells as a model. We further tested the ability of BRL37344 to modulate skeletal muscle glucose metabolism in animal models (glucose tolerance tests and in vivo and ex vivo skeletal muscle glucose uptake). In L6 cells, BRL37344 increased GLUT4 translocation and glucose uptake only by activation of beta(2)-adrenoceptors, with a similar potency and efficacy to that of the nonselective beta-adrenoceptor agonist isoprenaline, despite being a partial agonist with respect to cAMP generation. GLUT4 translocation occurred independently of Akt and AMPK phosphorylation but was dependent on mTORC2. Furthermore, in contrast to isoprenaline, BRL37344 did not promote agonist-mediated desensitization and failed to recruit beta-arrestin1/2 to the beta(2)-adrenoceptor. In conclusion, BRL37344 improved glucose tolerance and increased glucose uptake into skeletal muscle in vivo and ex vivo through a beta(2)-adrenoceptor-mediated mechanism independently of Akt. BRL37344 was a partial agonist with respect to cAMP, but a full agonist for glucose uptake, and importantly did not cause classical receptor desensitization or internalization of the receptor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy