SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kocheva D.) "

Search: WFRF:(Kocheva D.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ralet, D., et al. (author)
  • Evidence of octupole-phonons at high spin in Pb-207
  • 2019
  • In: Physics Letters B. - : ELSEVIER. - 0370-2693 .- 1873-2445. ; 797
  • Journal article (peer-reviewed)abstract
    • A lifetime measurement of the 19/2(-) state in Pb-207 has been performed using the Recoil Distance Doppler-Shift (RDDS) method. The nuclei of interest were produced in multi-nucleon transfer reactions induced by a Pb-208 beam impinging on a Mo-100 enriched target. The beam-like nuclei were detected and identified in terms of their atomic mass number in the VAMOS++ spectrometer while the prompt gamma rays were detected by the AGATA tracking array. The measured large reduced transition probability B(E3, 19/2(-) -> 13/2(+)) = 40(8) W.u. is the first indication of the octupole phonon at high spin in Pb-207. An analysis in terms of a particle-octupole-vibration coupling model indicates that the measured B(E3) value in Pb-207 is compatible with the contributions from single-phonon and single particle E3 as well as E3 strength arising from the double-octupole-phonon 6(+) state, all adding coherently. A crucial aspect of the coupling model, namely the strong mixing between single-hole and the phonon-hole states, is confirmed in a realistic shell-model calculation. Crown Copyright (C) 2019 Published by Elsevier B.V.
  •  
2.
  • Fernández, A., et al. (author)
  • Reinterpretation of excited states in 212Po: Shell-model multiplets rather than α-cluster states
  • 2021
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 104:5
  • Journal article (peer-reviewed)abstract
    • A γ-ray spectroscopic study of 212Po was performed at the Grand Accélérateur National d'Ions Lourds, using the inverse kinematics α-transfer reaction 12C(208Pb,212Po)8Be and the AGATA spectrometer. A careful analysis based on γγ coincidence relations allowed us to establish 14 new excited states in the energy range between 1.9 and 3.3 MeV. None of these states, however, can be considered as candidates for the levels with spins and parities of 1− and 2− and excitation energies below 2.1 MeV, which have been predicted by recent α-cluster model calculations. A systematic comparison of the experimentally established excitation scheme of 212Po with shell-model calculations was performed. This comparison suggests that the six states with excitation energies (spins and parities) of 1744 (4−), 1751 (8−), 1787 (6−), 1946 (4−), 1986 (8−), and 2016 (6−) keV, which previously were interpreted as α-cluster states, may in fact be of positive parity and belong to low-lying shell-model multiplets. This reinterpretation of the structure of 212Po is supported by experimental information with respect to the linear polarization of γ rays, which suggests a magnetic character of the 432-keV γ ray decaying from the state at an excitation energy of 1787 keV to the 6+ yrast state, and exclusive reaction cross sections.
  •  
3.
  • Kern, R., et al. (author)
  • Restoring the valence-shell stabilization in Nd 140
  • 2020
  • In: Physical Review C. - 2469-9985. ; 102:4
  • Journal article (peer-reviewed)abstract
    • A projectile Coulomb-excitation experiment was performed at the radioactive-ion beam facility HIE-ISOLDE at CERN to obtain E2 and M1 transition matrix elements of Nd140 using the multistep Coulomb-excitation code gosia. The absolute M1 strengths, B(M1;22+→21+)=0.033(8)μN2,B(M1;23+→21+)=0.26-0.10+0.11μN2, and B(M1;24+→21+)<0.04μN2, identify the 23+ state as the main fragment of the one-quadrupole-phonon proton-neutron mixed-symmetry state of Nd140. The degree of F-spin mixing in Nd140 was quantified with the determination of the mixing matrix element VF-mix<7-7+13keV.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view