SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kodambaka Suneel) "

Sökning: WFRF:(Kodambaka Suneel)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aleman, Angel, et al. (författare)
  • Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films
  • 2018
  • Ingår i: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Pd(111) thin films, ∼245 nm thick, are deposited on Al2O3(0001) substrates at ≈0.5Tm, where Tm is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD φ scans show six 60°-rotated 111 peaks of Pd at the same φ angles for 11 23 of Al2O3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as (111)Pd∥ (0001)Al2O3 with two in-plane orientations of [112]Pd∥ [1120]Al2O3 and [211]Pd∥ [1120]Al2O3. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11 2) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11 2) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al2O3(0001) samples indicate that the Pd-Al2O3 interfaces are essentially atomically abrupt and dislocation-free. These results demonstrate the growth of epitaxial Pd thin films with (111) out-of-plane orientation with low mosaicity on Al2O3(0001).
  •  
2.
  • Dick Thelander, Kimberly, et al. (författare)
  • The morphology of axial and branched nanowire heterostructures
  • 2007
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 7:6, s. 1817-1822
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an extensive investigation of the epitaxial growth of Au-assisted axial heterostructure nanowires composed of group IV and III-V materials and derive a model to explain the overall morphology of such wires. By analogy with 2D epitaxial growth, this model relates the wire morphology (i.e., whether it is kinked or straight) to the relationship of the interface energies between the two materials and the particle. This model suggests that, for any pair of materials, it should be easier to form a straight wire with one interface direction than the other, and we demonstrate this for the material combinations presented here. However, such factors as kinetics and the use of surfactants may permit the growth of straight double heterostructure nanowires. Finally, we demonstrate that branched nanowire heterostructures, also known as nanotrees, can be successfully explained by the same model.
  •  
3.
  • Hillerich, Karla, et al. (författare)
  • Strategies To Control Morphology in Hybrid Group III-V/Group IV Heterostructure Nanowires.
  • 2013
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 13:3, s. 903-908
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining in situ and ex situ transmission electron microscopy measurements, we examine the factors that control the morphology of "hybrid" nanowires that include group III-V and group IV materials. We focus on one materials pair, GaP/Si, for which we use a wide range of growth parameters. We show through video imaging that nanowire morphology depends on growth conditions, but that a general pattern emerges where either single kinks or inclined defects form some distance after the heterointerface. We show that pure Si nanowires can be made to exhibit the same kinks and defects by changing their droplet volume. From this we derive a model where droplet geometry drives growth morphology and discuss optimization strategies. We finally discuss morphology control for material pairs where the second material kinks immediately at the heterointerface and show that an interlayer between segments can enable the growth of unkinked hybrid nanowires.
  •  
4.
  • Tornberg, Marcus, et al. (författare)
  • Kinetics of Au-Ga Droplet Mediated Decomposition of GaAs Nanowires
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; , s. 3498-3504
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle-assisted III-V semiconductor nanowire growth and applications thereof have been studied extensively. However, the stability of nanowires in contact with the particle and the particle chemical composition as a function of temperature remain largely unknown. In this work, we use in situ transmission electron microscopy to investigate the interface between a Au-Ga particle and the top facet of an ?1 1 1 ?-oriented GaAs nanowire grown via the vapor-liquid-solid process. We observed a thermally activated bilayer-by-bilayer removal of the GaAs facet in contact with the liquid particle during annealing between 300 and 420 °C in vacuum. Interestingly, the GaAs-removal rates initially depend on the thermal history of the sample and are time-invariant at later times. In situ X-ray energy dispersive spectroscopy was also used to determine that the Ga content in the particle at any given temperature remains constant over extended periods of time and increases with increasing temperature from 300 to 400 °C. We attribute the observed phenomena to droplet-assisted decomposition of GaAs at a rate that is controlled by the amount of Ga in the droplet. We suggest that the observed transients in removal rates are a direct consequence of time-dependent changes in the Ga content. Our results provide new insights into the role of droplet composition on the thermal stability of GaAs nanowires and complement the existing knowledge on the factors influencing nanowire growth. Moreover, understanding the nanowire stability and decomposition is important for improving processing protocols for the successful fabrication and sustained operation of nanowire-based devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy