SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koeck P. J. B.) "

Sökning: WFRF:(Koeck P. J. B.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Mora, A., et al. (författare)
  • Gaia : Focus, straylight and basic angle
  • 2016
  • Ingår i: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. - : SPIE. - 9781510601871 ; 9904
  • Konferensbidrag (refereegranskat)abstract
    • The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.
  •  
4.
  •  
5.
  • Kaldmäe, Margit, et al. (författare)
  • A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder
  • 2022
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 30:5, s. 733-742, e1-e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of “life on the edge of solubility.” Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular “spindle and thread” mechanism unblocks protein translation in vitro.
  •  
6.
  • Koeck, Philip J. B., et al. (författare)
  • 3D-correlation-averaging for membrane-protein-crystals
  • 2008
  • Ingår i: EMC 2008 14th European Microscopy Congress. - Berlin, Heidelberg : Springer Berlin Heidelberg. ; , s. 55-56
  • Konferensbidrag (refereegranskat)abstract
    • Few 2-dimensional protein crystals can be used to determine high-resolution structures, whereas most electron crystallography projects remain at a resolution around 10 Ångström. This might be partly due to lack of flatness of many two-dimensional crystals [1]. We have investigated this problem and suggest single particle projection matching (3D-correlation averaging) of locally averaged unit cells to improve the quality of three-dimensional maps. Theoretical considerations and tests on simulated data demonstrate the feasibility of this refinement method [2].
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Koeck, P. J. B. (författare)
  • Improved Zernike-type phase contrast for transmission electron microscopy
  • 2015
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 259:1, s. 74-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of /2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. Lay description Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image specimens such as unstained biological molecules or sections of biological tissue. According to the original proposal, the Zernike phase plate applies a phase shift of /2 to all scattered electron beams outside a given scattering angle and an image is recorded at or close to focus. The resulting image will be an almost perfect representation of the specimen up to a maximum resolution determined by the energy of the electrons and certain optical parameters of the microscope. In this paper, I present theory and simulations showing that this maximum resolution can be increased considerably without loss of contrast by using a Zernike phase plate that leads to a phase shift between scattered and unscattered electrons of only /4, and recording images somewhat out of focus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy