SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koel B.) "

Sökning: WFRF:(Koel B.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Miller, A. M., et al. (författare)
  • Multicenter immunoassay validation of cerebrospinal fluid neurofilament light: a biomarker for neurodegeneration
  • 2016
  • Ingår i: Bioanalysis. - : Future Science Ltd. - 1757-6180 .- 1757-6199. ; 8:21, s. 2243-2254
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Neurofilament light (NfL) chain, a putative cerebrospinal fluid biomarker, can support neurodegenerative disease diagnosis and indicate disease severity and prognosis. Universal validation protocols when used to measure biomarkers can reduce pre and analytical laboratory variation, thus increasing end-user confidence in the consistency of validation data across sites. Methodology: Here, a commercially available NfL ELISA (UmanDiagnostics, Ume dagger, Sweden) was validated in a multicentered setting using comprehensive newly developed standard operating procedures. Results: The data showed good assay sensitivity and intra and interassay precision. Interlaboratory precision was, however, suboptimal. Conclusion: The UmanDiagnostics assay is suitable for the quantification of NfL in human cerebrospinal fluid. However, sources of interlaboratory variation in the data require further investigation.
  •  
3.
  • Kronawitter, C. X., et al. (författare)
  • Titanium incorporation into hematite photoelectrodes : theoretical considerations and experimental observations
  • 2014
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 7:10, s. 3100-3121
  • Tidskriftsartikel (refereegranskat)abstract
    • A theoretical and experimental perspective on the role of titanium impurities in hematite (alpha-Fe2O3) nanostructured photoelectrodes for solar fuel synthesis devices is provided. Titanium incorporation is a known correlate to efficiency enhancement in alpha-Fe2O3 cc photoanodes for solar water oxidation; here the relevant literature and the latest advances are presented and various proposed mechanisms for enhancement are contrasted. Available experimental evidence suggests that Ti incorporation increases net electron carrier concentrations in electrodes, most likely to the extent that (synthesis-dependent) charge compensating cation vacancies are not present. However, electron conductivity increases alone cannot quantitatively account for the large associated photoelectrochemical performance enhancements. The magnitudes of the effects of Ti incorporation on electronic and magnetic properties appear to be highly synthesis-dependent, which has made difficult the development of consistent and general mechanisms explaining experimental and theoretical observations. In this context, we consider how the electronic structure correlates with Ti impurity incorporation in alpha-Fe2O3 a from the perspective of synchrotron-based soft X-ray absorption spectroscopy measurements. Measurements are performed on sets of electrodes fabricated by five relevant and unrelated chemical and physical techniques. The effects of titanium impurities are reflected in the electronic structure through several universally observed spectral characteristics, irrespective of the synthesis techniques. Absorption spectra at the oxygen K-edge show that Ti incorporation is associated with new oxygen 2p-hybridized states, overlapping with and distorting the known unoccupied Fe 3d-O 2xp band of alpha-Fe2O3. This is an indication of mixing of Ti s and d states in the conduction band of alpha-Fe2O3. cc A comparison of spectra obtained with electron and photon detection shows that the effects of Ti incorporation on the conduction band are more pronounced in the near-surface region. Titanium L-2,L-3-edge absorption spectra show that titanium is incorporated into alpha-Fe2O3 as Ti4+ by all fabrication methods, with no long-range titania order detected. Iron L-2,L-3-edge absorption spectra indicate that Ti incorporation is not associated with the formation, of any significant concentrations of Fe2+, an observation common to many prior studies on this material system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy