SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koenigk Torben) "

Sökning: WFRF:(Koenigk Torben)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Döscher, Ralf, et al. (författare)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
2.
  • Sterl, Andreas, et al. (författare)
  • A look at the ocean in the EC-Earth climate model
  • 2012
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 39:11, s. 2631-2657
  • Tidskriftsartikel (refereegranskat)abstract
    • EC-Earth is a newly developed global climate system model. Its core components are the Integrated Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) as the atmosphere component and the Nucleus for European Modelling of the Ocean (NEMO) developed by Institute Pierre Simon Laplace (IPSL) as the ocean component. Both components are used with a horizontal resolution of roughly one degree. In this paper we describe the performance of NEMO in the coupled system by comparing model output with ocean observations. We concentrate on the surface ocean and mass transports. It appears that in general the model has a cold and fresh bias, but a much too warm Southern Ocean. While sea ice concentration and extent have realistic values, the ice tends to be too thick along the Siberian coast. Transports through important straits have realistic values, but generally are at the lower end of the range of observational estimates. Exceptions are very narrow straits (Gibraltar, Bering) which are too wide due to the limited resolution. Consequently the modelled transports through them are too high. The strength of the Atlantic meridional overturning circulation is also at the lower end of observational estimates. The interannual variability of key variables and correlations between them are realistic in size and pattern. This is especially true for the variability of surface temperature in the tropical Pacific (El Nio). Overall the ocean component of EC-Earth performs well and helps making EC-Earth a reliable climate model.
  •  
3.
  • Akperov, Mirseid, et al. (författare)
  • Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)
  • 2018
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 123:5, s. 2537-2554
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
  •  
4.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)
  • 2019
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
  •  
5.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX)
  • 2023
  • Ingår i: Anthropocene. - 2213-3054. ; 44
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020-2049 and 2070-2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.
  •  
6.
  • Akperov, M. G., et al. (författare)
  • Wind Energy Potential in the Arctic and Subarctic Regions and Its Projected Change in the 21st Century Based on Regional Climate Model Simulations
  • 2022
  • Ingår i: Russian Meteorology and Hydrology. - 1068-3739 .- 1934-8096. ; 47:6, s. 428-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative estimates of changes in wind energy resources in the Arctic were obtained using the RCA4 regional climate model under the RCP4.5 and RCP8.5 climate change scenarios for 2006–2099. The wind power density proportional to cubic wind speed was analyzed. The procedure for the model near-surface wind speed bias correction using ERA5 data as a reference with subsequent extrapolation of wind speed to the turbine height was applied to estimate the wind power density (WPD). According to the RCA4 simulations for the 21st century under both anthropogenic forcing scenarios, a noticeable increase in the WPD was noted, in particular, over the Barents, Kara, and Chukchi seas in winter. In summer, a general increase in the WPD is manifested over the Arctic Ocean. The changes are more significant under the RCP8.5 scenario with high anthropogenic forcing for the 21st century. According to model projections, an increase in the interdaily WPD variations does not generally lead to the deviations of wind speed to the values at which the operation of wind generators is unfeasible.
  •  
7.
  • Brodeau, Laurent, et al. (författare)
  • Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries
  • 2016
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 46:9, s. 2863-2882
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the variability and the evolution of oceanic deep convection in the northern North Atlantic and the Nordic Seas from 1850 to 2100 using an ensemble of 12 climate model simulations with EC-Earth. During the historical period, the model shows a realistic localization of the main sites of deep convection, with the Labrador Sea accounting for most of the deep convective mixing in the northern hemisphere. Labrador convection is partly driven by the NAO (correlation of 0.6) and controls part of the variability of the AMOC at the decadal time scale (correlation of 0.6 when convection leads by 3-4 years). Deep convective activity in the Labrador Sea starts to decline and to become shallower in the beginning of the twentieth century.  The decline is primarily caused by a decrease of the sensible heat loss to the atmosphere in winter resulting from increasingly warm atmospheric conditions. It occurs stepwise and is mainly the consequence of two severe drops in deep convective activity during the 1920s and the 1990s.  These two events can both be linked to the low-frequency variability of the NAO. A warming of the sub-surface, resulting from reduced convective mixing, combines with an increasing influx of freshwater from the Nordic Seas to rapidly strengthen the surface stratification and prevent any possible resurgence of deep convection in the Labrador Sea after the 2020s. Deep convection in the Greenland Sea starts to decline in the 2020s, until complete extinction in 2100. As a response to the extinction of deep convection in the Labrador and Greenland Seas, the AMOC undergoes a linear decline at a rate of about -0.3 Sv per decade during the twenty-first century.
  •  
8.
  • Cheung, Ho-Nam, et al. (författare)
  • Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 59:1-2, s. 433-454
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the uncertainty (i.e., inter-model spread) in future projections of the boreal winter climate, based on the forced response of ten models from the CMIP5 following the RCP8.5 scenario. The uncertainty in the forced response of sea level pressure (SLP) is large in the North Pacific, the North Atlantic, and the Arctic. A major part of these uncertainties (31%) is marked by a pattern with a center in the northeastern Pacific and a dipole over the northeastern Atlantic that we label as the Pacific–Atlantic SLP uncertainty pattern (PA∆SLP). The PA∆SLP is associated with distinct global sea surface temperature (SST) and Arctic sea ice cover (SIC) perturbation patterns. To better understand the nature of the PA∆SLP, these SST and SIC perturbation patterns are prescribed in experiments with two atmospheric models (AGCMs): CAM4 and IFS. The AGCM responses suggest that the SST uncertainty contributes to the North Pacific SLP uncertainty in CMIP5 models, through tropical–midlatitude interactions and a forced Rossby wavetrain. The North Atlantic SLP uncertainty in CMIP5 models is better explained by the combined effect of SST and SIC uncertainties, partly related to a Rossby wavetrain from the Pacific and air-sea interaction over the North Atlantic. Major discrepancies between the CMIP5 and AGCM forced responses over northern high-latitudes and continental regions are indicative of uncertainties arising from the AGCMs. We analyze the possible dynamic mechanisms of these responses, and discuss the limitations of this work.
  •  
9.
  • Docquier, David, et al. (författare)
  • A review of interactions between ocean heat transport and Arctic sea ice
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:12
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic sea ice has been retreating at fast pace over the last decades, with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. The current sea-ice loss is driven by both atmospheric and oceanic processes. One of these key processes, the influence of ocean heat transport on Arctic sea ice, is one of the least understood due to the greater inaccessibility of the ocean compared to the atmosphere. Recent observational and modeling studies show that the poleward Atlantic and Pacific Ocean heat transports can have a strong influence on Arctic sea ice. In turn, the changing sea ice may also affect ocean heat transport, but this effect has been less investigated so far. In this review, we provide a synthesis of the main studies that have analyzed the interactions between ocean heat transport and Arctic sea ice, focusing on the most recent analyses. We make use of observations and model results, as they are both complementary, in order to better understand these interactions. We show that our understanding in sea ice - ocean heat transport relationships has improved during recent years. The Barents Sea is the Arctic region where the influence of ocean heat transport on sea ice has been the largest in the past years, explaining the large number of studies focusing on this specific region. The Pacific Ocean heat transport also constitutes a key driver in the recent Arctic sea-ice changes, thus its contribution needs to be taken into account. Although under-studied, the impact of sea-ice changes on ocean heat transport, via changes in ocean temperature and circulation, is also important to consider. Further analyses are needed to improve our understanding of these relationships using observations and climate models.
  •  
10.
  • Docquier, David, et al. (författare)
  • Observation-based selection of climate models projects Arctic ice-free summers around 2035
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy