SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koepp Matthias) "

Sökning: WFRF:(Koepp Matthias)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galovic, Marian, et al. (författare)
  • Seizures and Epilepsy After Stroke: Epidemiology, Biomarkers and Management.
  • 2021
  • Ingår i: Drugs & aging. - : Springer Science and Business Media LLC. - 1179-1969 .- 1170-229X. ; 38, s. 285-299
  • Forskningsöversikt (refereegranskat)abstract
    • Stroke is the leading cause of seizures and epilepsy in older adults. Patients who have larger and more severe strokes involving the cortex, are younger, and have acute symptomatic seizures and intracerebral haemorrhage are at highest risk of developing post-stroke epilepsy. Prognostic models, including the SeLECT and CAVE scores, help gauge the risk of epileptogenesis. Early electroencephalogram and blood-based biomarkers can provide information additional to the clinical risk factors of post-stroke epilepsy. The management of acute versus remote symptomatic seizures after stroke is markedly different. The choice of an ideal antiseizure medication should not only rely on efficacy but also consider adverse effects, altered pharmacodynamics in older adults, and the influence on the underlying vascular co-morbidity. Drug-drug interactions, particularly those between antiseizure medications and anticoagulants or antiplatelets, also influence treatment decisions. In this review, we describe the epidemiology, risk factors, biomarkers, and management of seizures after an ischaemic or haemorrhagic stroke. We discuss the special considerations required for the treatment of post-stroke epilepsy due to the age, co-morbidities, co-medication, and vulnerability of stroke survivors.
  •  
2.
  • McGinnity, Colm J, et al. (författare)
  • Αlpha 5 subunit-containing GABAA receptors in temporal lobe epilepsy with normal MRI.
  • 2021
  • Ingår i: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49±13years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40±8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [VF; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (VS; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of VF and VS measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher VS in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P<0.004). This was associated with reduced VF:VS ratios within the same areas (P<0.009). Comparisons of VS for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4±1.0 versus 0.7±0.3; P=0.02). In individuals with epilepsy, hippocampal VS did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced VF in the hippocampal area, which was significant ipsilaterally (P=0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
  •  
3.
  • Syvänen, Stina, et al. (författare)
  • [C-11]quinidine and [C-11]laniquidar PET imaging in a chronic rodent epilepsy model : Impact of epilepsy and drug-responsiveness
  • 2013
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 40:6, s. 764-775
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: To analyse the impact of both epilepsy and pharmacological modulation of P-glycoprotein on brain uptake and kinetics of positron emission tomography (PET) radiotracers [C-11]quinidine and [C-11]laniquidar.Methods: Metabolism and brain kinetics of both [C-11]quinidine and [C-11]laniquidar were assessed in naive rats, electrode-implanted control rats, and rats with spontaneous recurrent seizures. The latter group was further classified according to their response to the antiepileptic drug phenobarbital into "responders" and "non-responders". Additional experiments were performed following pre-treatment with the P-glycoprotein modulator tariquidar.Results: [C-11]quinidine was metabolized rapidly, whereas [C-11]laniquidar was more stable. Brain concentrations of both radiotracers remained at relatively low levels at baseline conditions. Tariquidar pre-treatment resulted in significant increases of [C-11]quinidine and [C-11]laniquidar brain concentrations. In the epileptic subgroup "non-responders", brain uptake of [C-11]quinidine in selected brain regions reached higher levels than in electrode-implanted control rats. However, the relative response to tariquidar did not differ between groups with full blockade of P-glycoprotein by 15 mg/kg of tariquidar. For [C-11]laniquidar differences between epileptic and control animals were only evident at baseline conditions but not after tariquidar pretreatment.Conclusions: We confirmed that both [C-11]quinidine and [C-11]laniquidar are P-glycoprotein substrates. At full P-gp blockade, tariquidar pre-treatment only demonstrated slight differences for [C-11]quinidine between drug-resistant and drug-sensitive animals.
  •  
4.
  • van Assema, Daniëlle ME, et al. (författare)
  • Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients : effect of polymorphisms in the ABCB1 gene
  • 2012
  • Ingår i: EJNMMI Research. - 2191-219X. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide polymorphisms in the ABCB1 gene have been associated with altered P-glycoprotein expression and function. P-glycoprotein function at the blood-brain barrier can be quantified in vivo using the P-glycoprotein substrate tracer (R)-[11C]verapamil and positron emission tomography (PET). The purpose of this study was to assess the effects of C1236T, G2677T/A and C3435T single-nucleotide polymorphisms in ABCB1 on blood-brain barrier P-glycoprotein function in healthy subjects and patients with Alzheimer's disease.METHODS: Thirty-two healthy subjects and seventeen patients with Alzheimer's disease underwent 60-min dynamic (R)-[11C]verapamil PET scans. The binding potential of (R)-[11C]verapamil was assessed using a previously validated constrained two-tissue plasma input compartment model and used as outcome measure. DNA was isolated from frozen blood samples and C1236T, G2677T/A and C3435T single-nucleotide polymorphisms were amplified by polymerase chain reaction.RESULTS: In healthy controls, binding potential did not differ between subjects without and with one or more T present in C1236T, G2677T and C3435T. In contrast, patients with Alzheimer's disease with one or more T in C1236T, G2677T and C3435T had significantly higher binding potential values than patients without a T. In addition, there was a relationship between binding potential and T dose in C1236T and G2677T.CONCLUSIONS: In Alzheimer's disease patients, C1236T, G2677T/A and C3435T single-nucleotide polymorphisms may be related to changes in P-glycoprotein function at the blood-brain barrier. As such, genetic variations in ABCB1 might contribute to the progression of amyloid-beta deposition in the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy