SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koh Gou Young) "

Sökning: WFRF:(Koh Gou Young)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Park, Dae-Young, et al. (författare)
  • Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity
  • 2014
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 124:9, s. 3960-3974
  • Tidskriftsartikel (refereegranskat)abstract
    • Schlemm's canal (SC) is a specialized vascular structure in the eye that functions to drain aqueous humor from the intraocular chamber into systemic circulation. Dysfunction of SC has been proposed to Underlie increased aqueous humor outflow (AHO) resistance, which leads to elevated ocular pressure, a factor for glaucoma development in humans. Here, using lymphatic and blood vasculature reporter mice, we determined that SC, which originates from blood vessels during the postnatal period, acquires lymphatic identity through upregulation of prospero homeobox protein 1 (PROX1), the master regulator of lymphatic development. SC expressed lymphatic valve markers FOXC2 and integrin alpha(9) and exhibited continuous vascular endothelial-cadherin (VE-cadherin) junctions and basement membrane, similar to collecting lymphatics. SC notably lacked luminal valves and expression of the lymphatic endothelial cell markers podoplanin and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Using an ocular puncture model, we determined that reduced AHO altered the fate of SC both during development and under pathologic conditions; however, alteration of VEGF-C/VEGFR3 signaling did not modulate SC integrity and identity. Intriguingly, PROX1 expression levels linearly correlated with SC functionality. For example, PROX1 expression was reduced or undetectable under pathogenic conditions and in deteriorated SCs. Collectively, our data indicate that PROX1 is an accurate and reliable biosensor of SC integrity and identity.
  •  
2.
  • Cho, Hyunsoo, et al. (författare)
  • YAP and TAZ Negatively Regulate Prox1 During Developmental and Pathologic Lymphangiogenesis
  • 2019
  • Ingår i: Circulation Research. - : Lippincott Williams & Wilkins. - 0009-7330 .- 1524-4571. ; 124:2, s. 225-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: The Hippo pathway governs cellular differentiation, morphogenesis, and homeostasis, but how it regulates these processes in lymphatic vessels is unknown. Objective: We aimed to reveal the role of the final effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), in lymphatic endothelial cell (LEC) differentiation, morphogenesis, and homeostasis. Methods and Results: During mouse embryonic development, LEC-specific depletion of Yap/Taz disturbed both plexus patterning and valve initiation with upregulated Prox1 (prospero homeobox 1). Conversely, LEC-specific YAP/TAZ hyperactivation impaired lymphatic specification and restricted lymphatic sprouting with profoundly downregulated Prox1. Notably, lymphatic YAP/TAZ depletion or hyperactivation aggravated or attenuated pathological lymphangiogenesis in mouse cornea. Mechanistically, VEGF (vascular endothelial growth factor)-C activated canonical Hippo signaling pathway in LECs. Indeed, repression of PROX1 transcription by YAP/TAZ hyperactivation was mediated by recruitment of NuRD (nucleosome remodeling and histone deacetylase) complex and endogenous binding activity of TEAD (TEA domain family members) to the PROX1 promoter. Furthermore, YAP/TAZ hyperactivation enhanced MYC signaling and inhibited CDKN1C, leading to cell cycle dysregulation and aberrant proliferation. Conclusions: We find that YAP and TAZ play promoting roles in remodeling lymphatic plexus patterning and postnatal lymphatic valve maintenance by negatively regulating Prox1 expression. We further show that YAP and TAZ act as plastic regulators of lymphatic identity and define the Hippo signaling-mediated PROX1 transcriptional programing as a novel dynamic checkpoint underlying LEC plasticity and pathophysiology.
  •  
3.
  •  
4.
  • Ding, Hao, et al. (författare)
  • A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling.
  • 2004
  • Ingår i: Nat Genet. - 1061-4036. ; 36:10, s. 1111-6
  • Tidskriftsartikel (refereegranskat)abstract
    • PDGF-C is a member of the platelet-derived growth factor (PDGF) family, which signals through PDGF receptor (PDGFR) alphaalpha and alphabeta dimers. Here we show that Pdgfc(-/-) mice die in the perinatal period owing to feeding and respiratory difficulties associated with a complete cleft of the secondary palate. This phenotype was less severe than that of Pdgfra(-/-) embryos. Pdgfc(-/-) Pdgfa(-/-) embryos developed a cleft face, subepidermal blistering, deficiency of renal cortex mesenchyme, spina bifida and skeletal and vascular defects. Complete loss of function of both ligands, therefore, phenocopied the loss of PDGFR-alpha function, suggesting that both PDGF-A and PDGF-C signal through PDGFR-alpha to regulate the development of craniofacial structures, the neural tube and mesodermal organs. Our results also show that PDGF-C signaling is a new pathway in palatogenesis, different from, and independent of, those previously implicated.
  •  
5.
  • Hayashi, Makoto, et al. (författare)
  • VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4, s. 1672-
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF receptor-2 located in endothelial junctions indirectly, via the Angiopoietin-1 receptor Tie2. VE-PTP inactivation in mouse embryoid bodies leads to excess VEGF receptor-2 activity in stalk cells, increased tyrosine phosphorylation of VE-cadherin and loss of cell polarity and lumen formation. Vessels in ve-ptp(-/-) teratomas also show increased VEGF receptor-2 activity and loss of endothelial polarization. Moreover, the zebrafish VE-PTP orthologue ptp-rb is essential for polarization and lumen formation in intersomitic vessels. We conclude that the role of Tie2 in maintenance of vascular quiescence involves VE-PTP-dependent dephosphorylation of VEGF receptor-2, and that VEGF receptor-2 activity regulates VE-cadherin tyrosine phosphorylation, endothelial cell polarity and lumen formation.
  •  
6.
  • Ober, Elke A, et al. (författare)
  • Vegfc is required for vascular development and endoderm morphogenesis in zebrafish.
  • 2004
  • Ingår i: EMBO Reports. - : EMBO. - 1469-221X .- 1469-3178. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During embryogenesis, complex morphogenetic events lead endodermal cells to coalesce at the midline and form the primitive gut tube and associated organs. While several genes have recently been implicated in endoderm differentiation, we know little about the genes that regulate endodermal morphogenesis. Here, we show that vascular endothelial growth factor C (Vegfc), an angiogenic as well as a lymphangiogenic factor, is unexpectedly involved in this process in zebrafish. Reducing Vegfc levels using morpholino antisense oligonucleotides, or through overexpression of a soluble form of the VEGFC receptor, VEGFR-3, affects the coalescence of endodermal cells in the anterior midline, leading to the formation of a forked gut tube and the duplication of the liver and pancreatic buds. Further analyses indicate that Vegfc is additionally required for the initial formation of the dorsal endoderm. We also demonstrate that Vegfc is required for vasculogenesis as well as angiogenesis in the zebrafish embryo. These data argue for a requirement of Vegfc in the developing vasculature and, more surprisingly, implicate Vegfc signalling in two distinct steps during endoderm development, first during the initial differentiation of the dorsal endoderm, and second in the coalescence of the anterior endoderm to the midline.
  •  
7.
  • Suh, Sang Heon, et al. (författare)
  • Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages
  • 2019
  • Ingår i: EMBO Reports. - : WILEY. - 1469-221X .- 1469-3178. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A lacteal is a blunt-ended, long, tube-like lymphatic vessel located in the center of each intestinal villus that provides a unique route for drainage of absorbed lipids from the small intestine. However, key regulators for maintaining lacteal integrity are poorly understood. Here, we explore whether and how the gut microbiota regulates lacteal integrity. Germ depletion by antibiotic treatment triggers lacteal regression during adulthood and delays lacteal maturation during the postnatal period. In accordance with compromised lipid absorption, the button-like junction between lymphatic endothelial cells, which is ultrastructurally open to permit free entry of dietary lipids into lacteals, is significantly reduced in lacteals of germ-depleted mice. Lacteal defects are also found in germ-free mice, but conventionalization of germ-free mice leads to normalization of lacteals. Mechanistically, VEGF-C secreted from villus macrophages upon MyD88-dependent recognition of microbes and their products is a main factor in lacteal integrity. Collectively, we conclude that the gut microbiota is a crucial regulator for lacteal integrity by endowing its unique microenvironment and regulating villus macrophages in small intestine.
  •  
8.
  • Yoshimatsu, Yasuhiro, et al. (författare)
  • Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:47, s. 18940-18945
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphatic vessels (LVs) play critical roles in the maintenance of fluid homeostasis and in pathological conditions, including cancer metastasis. Although mutations in ALK1, a member of the transforming growth factor (TGF)-beta/bone morphogenetic protein (BMP) receptor family, have been linked to hereditary hemorrhagic telangiectasia, a human vascular disease, the roles of activin receptor-like kinase 1(ALK-1) signals in LV formation largely remain to be elucidated. We show that ALK-1 signals inhibit LV formation, and LVs were enlarged in multiple organs in Alk1-depleted mice. These inhibitory effects of ALK-1 signaling were mediated by BMP-9, which decreased the number of cultured lymphatic endothelial cells. Bmp9-deficient mouse embryos consistently exhibited enlarged dermal LVs. BMP-9 also inhibited LV formation during inflammation and tumorigenesis. BMP-9 downregulated the expression of the transcription factor prospero-related homeobox 1, which is necessary to maintain lymphatic endothelial cell identity. Furthermore, silencing prospero-related homeobox 1 expression inhibited lymphatic endothelial cell proliferation. Our findings reveal a unique molecular basis for the physiological and pathological roles of BMP-9/ALK-1 signals in LV formation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy