SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kohler Manfred) "

Sökning: WFRF:(Kohler Manfred)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Auffray, Charles, et al. (författare)
  • Making sense of big data in health research: Towards an EU action plan
  • 2016
  • Ingår i: Genome Medicine. - : BIOMED CENTRAL LTD. - 1756-994X. ; 8:71
  • Tidskriftsartikel (refereegranskat)abstract
    • Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health arid healthcare for all Europearis.
  •  
3.
  • Chaitanya, Lakshmi, et al. (författare)
  • Collaborative EDNAP exercise on the IrisPlex system for DNA based prediction of human eye colour
  • 2014
  • Ingår i: Forensic Science International. - : Elsevier. - 1872-4973 .- 1878-0326. ; 11, s. 241-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The IrisPlex system is a DNA-based test system for the prediction of human eye colour from biological samples and consists of a single forensically validated multiplex genotyping assay together with a statistical prediction model that is based on genotypes and phenotypes from thousands of individuals. IrisPlex predicts blue and brown human eye colour with, on average, >94% precision accuracy using six of the currently most eye colour informative single nucleotide polymorphisms (HERC2 rs12913832, OCA2 rs1800407, SLC24A4 rs12896399, SLC45A2 (MATP) rs16891982, TYR rs1393350, and IRF4 rs12203592) according to a previous study, while the accuracy in predicting non-blue and non-brown eye colours is considerably lower. In an effort to vigorously assess the IrisPlex system at the international level, testing was performed by 21 laboratories in the context of a collaborative exercise divided into three tasks and organised by the European DNA Profiling (EDNAP) Group of the International Society of Forensic Genetics (ISFG). Task 1 involved the assessment of 10 blood and saliva samples provided on FTA cards by the organising laboratory together with eye colour phenotypes; 99.4% of the genotypes were correctly reported and 99% of the eye colour phenotypes were correctly predicted. Task 2 involved the assessment of 5 DNA samples extracted by the host laboratory from simulated casework samples, artificially degraded, and provided to the participants in varying DNA concentrations. For this task, 98.7% of the genotypes were correctly determined and 96.2% of eye colour phenotypes were correctly inferred. For Tasks 1 and 2 together, 99.2% (1875) of the 1890 genotypes were correctly generated and of the 15 (0.8%) incorrect genotype calls, only 2 (0.1%) resulted in incorrect eye colour phenotypes. The voluntary Task 3 involved participants choosing their own test subjects for IrisPlex genotyping and eye colour phenotype inference, while eye photographs were provided to the organising laboratory and judged; 96% of the eye colour phenotypes were inferred correctly across 100 samples and 19 laboratories. The high success rates in genotyping and eye colour phenotyping clearly demonstrate the reproducibility and the robustness of the IrisPlex assay as well as the accuracy of the IrisPlex model to predict blue and brown eye colour from DNA. Additionally, this study demonstrates the ease with which the IrisPlex system is implementable and applicable across forensic laboratories around the world with varying pre-existing experiences.
  •  
4.
  • Hammer, Edith, et al. (författare)
  • Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress
  • 2015
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 96, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined combined effects of biochar, arbuscular mycorrhizal (AM) fungi and salinity on plant growth and physiology to test whether and how biochar influences AM fungi mediated growth and nutrition enhancements, and whether and how biochar provides amelioration in salt stressed soils. We carried out a full three-factorial greenhouse experiment with Lactuca sativa; and a second study with a wider range of biochar and salt additions to examine physicochemical effects on soil parameters. Biochar together with AM fungal inoculation resulted in an additional plant yield increase compared to each alone under non-saline conditions. In parallel with increased plant growth, we found increased uptake of P and Mn with AM fungi and biochar addition, but to a lesser extent than biochar-induced growth promotion. Both factors, but especially biochar alleviated salinity-caused growth depressions, and improved Na/K ratio in salinity stressed plants. Reduced Na uptake of plants and reduced conductivity in biochar-ameliorated soils suggest that a likely mechanism involves ion adsorption to biochar surfaces. Our results suggest that plants depend on symbiotic microorganisms to fully exploit biochar benefits in soils, suggesting avenues for joint management in agriculture. Biochar may be advantageous in saline soils, but long-term studies are required before recommendations should be given. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy