SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kokfelt U.) "

Sökning: WFRF:(Kokfelt U.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kokfelt, U., et al. (författare)
  • Diatom blooms and associated vegetation shifts in a subarctic peatland : responses to distant volcanic eruptions?
  • 2016
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 31:7, s. 723-730
  • Tidskriftsartikel (refereegranskat)abstract
    • We test the hypothesis that rich occurrences of diatoms observed at transitions between major peat units representing different vegetation communities in a peat sequence from subarctic northern Sweden reflect responses to acid deposition from the Samalas AD 1257 and Laki AD 1783/1784 eruptions. We observe sudden changes in the mire ecosystem and thereby in the trophic status and biogeochemical cycling of the peatland. Both the eruptions are known to have been associated with significant acid deposition events and climatic anomalies, as recorded in polar ice cores. To test the hypothesis, new chronological analyses and age modelling were applied to existing biogeochemical and biological records from the peat sequence. This approach yielded modelled age ranges of AD 1239-1284 (1s)/AD 1210-1303 (2s) (median: AD 1260) and AD 1674-1795 (1s)/AD 1665-1875 (2s) (median AD 1743), respectively, for the stratigraphic transitions. Hence, the modelled age ranges bracket the ages of the eruptions in question and the hypothesis could therefore not be rejected. Impacts of acid deposition from the eruptions are assumed to have caused instant acidification, vegetation damage, increased nutrient cycling and blooms of opportunistic epiphytic diatoms. In addition, cooling may have contributed to vegetation changes through permafrost inception, frost heave and thereby altered hydrological conditions.
  •  
2.
  • Strandberg, G., et al. (författare)
  • Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation.
  • 2013
  • Ingår i: Climate of the Past Discussions. - : Copernicus GmbH. - 1814-9340 .- 1814-9359. ; 9:5, s. 5785-5836
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 k BP and ~0.2 k BP in Europe. We apply RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land cover (deforestation) as simulated by the HYDE model (V + H), and (iii) potential vegetation with anthropogenic land cover as simulated by the KK model (V + K). The KK model estimates are closer to a set of pollen-based reconstructions of vegetation cover than the HYDE model estimates. The climate-model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, simulated deforestation is much more extensive than previously assumed, in particular according to the KK model. This leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe since evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land cover estimate has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a thorough comparison with climate model results.
  •  
3.
  • Treat, C. C., et al. (författare)
  • Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 121:1, s. 78-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23g C m(-2)yr(-1)) than in permafrost-free bogs (18g C m(-2)yr(-1)) and were lowest in boreal permafrost peatlands (14g C m(-2)yr(-1)). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy