SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kokorite Ilga) "

Sökning: WFRF:(Kokorite Ilga)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Meilutytė-Lukauskienė, Diana, et al. (författare)
  • Hydro-meteorological droughts across the Baltic Region : The role of the accumulation periods
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697. ; 913
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on the physical and geographical conditions, the Baltic Region is categorised as a humid climate zone. This means that, there is usually more precipitation than evaporation throughout the year, suggesting that droughts should not occur frequently in this region. Despite the humid climate in the region, the study focused on assessing the spatio-temporal patterns of droughts. The drought events were analysed across the Baltic Region, including Sweden, Finland, Lithuania, Latvia, and Estonia. This analysis included two drought indices, the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI), for different accumulation periods. Daily data series of precipitation and river discharge were used. The spatial and temporal analyses of selected drought indices were carried out for the Baltic Region. In addition, the decadal distribution of drought classes was analysed to disclose the temporal changes and spatial extent of drought patterns. The Pearson correlation between SPI and SDI was applied to investigate the relationship between meteorological and hydrological droughts. The analysis showed that stations with more short-duration SPI or SDI cases had fewer long-duration cases and vice versa. The number of SDI cases (SDI ≤ −1) increased in the Western Baltic States and some WGSs in Sweden and Finland from 1991 to 2020 compared to 1961–1990. The SPI showed no such tendencies except in Central Estonia and Southern Finland. The 6-month accumulation period played a crucial role in both the meteorological and hydrological drought analyses, as it revealed prolonged and widespread drought events. Furthermore, the 9- and 12-month accumulation periods showed similar trends in terms of drought duration and spatial extent. The highest number of correlation links between different months was found between SPI12-SDI9 and SPI12-SDI12. The results obtained have deepened our understanding of drought patterns and their potential impacts in the Baltic Region.
  •  
3.
  • Ray, Nicholas E. E., et al. (författare)
  • Spatial and temporal variability in summertime dissolved carbon dioxide and methane in temperate ponds and shallow lakes
  • 2023
  • Ingår i: Limnology and Oceanography. - : American Society of Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 68:7, s. 1530-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2 and CH4. Here, we measured partial pressures of CO2 (pCO2) and CH4 (pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability of pCO2 and pCH4 in space and time. Summer means of pCO2 and pCH4 were inversely related to waterbody size and positively related to floating vegetative cover; pCO2 was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonal pCO2 by up to 26%, mean seasonal pCH4 could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability in pCH4 and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities.
  •  
4.
  • Undeman, Emma, 1981-, et al. (författare)
  • Micropollutants in urban wastewater : large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment
  • 2022
  • Ingår i: Marine Pollution Bulletin. - : Elsevier BV. - 0025-326X .- 1879-3363. ; 178
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewater treatment plants (WWTPs) transmit many chemical contaminants to aquatic environments. Quantitative data on micropollutant emissions via WWTPs are needed for environmental risk assessments and evaluation of mitigation measures. This study compiled published data on substances analysed in effluents from WWTPs in the Baltic Sea region, assessed country related differences in the data sets and estimated micropollutant inputs to the Baltic Sea catchment. Concentration data were found for 1090 substances analysed at 650 WWTPs. Heterogeneity and low number of data points for most substances hindered adequate comparisons of country specific concentrations. Emission estimates were made for the 280 substances analysed in at least five WWTPs in years 2010 to 2019. For selected substances, mass loads were compared to previously published estimations. The study provides data useful for national and Baltic Sea-scale pressure analysis and risk assessments. However, it also highlights the need for broad scope monitoring of micropollutants in wastewater.
  •  
5.
  • Undeman, Emma, et al. (författare)
  • Policy brief: Call for better management of micropollutants in wastewater
  • 2021
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Urban wastewater treatment plants are important collection points for many chemical contaminants, often called micropollutants, which are widespread in the aquatic environment. Currently, this issue is not being sufficiently addressed by regional policy and EU-wide legislation. The EU’s Zero Pollution Ambition, the Chemicals Strategy for Sustainability and the likely revision of the Urban Waste-water Treatment Directive now provide opportunities to address this issue. Measures to prevent the emissions of micropollutants via wastewater treatment plants are needed both up- and downstream, to ensure policy coherence between EU water and chemicals legislation.
  •  
6.
  • Weyhenmeyer, Gesa A., et al. (författare)
  • Widespread diminishing anthropogenic effects on calcium in freshwaters
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations <= 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in > 200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy