SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolb Annette) "

Sökning: WFRF:(Kolb Annette)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, Kamal Prasad, et al. (författare)
  • Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe
  • 2017
  • Ingår i: Acta Oecologica. - : Elsevier BV. - 1146-609X .- 1873-6238. ; 81, s. 40-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49 degrees 34'N) to Norway (63 degrees 40'N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations. Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. nolitangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.
  •  
2.
  • De Frenne, Pieter, et al. (författare)
  • An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient
  • 2011
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 34:1, s. 132-140
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach.
  •  
3.
  • De Frenne, Pieter, et al. (författare)
  • Biological Flora of the British Isles : Milium effusum
  • 2017
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 105:3, s. 839-858
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. This account presents information on all aspects of the biology of Milium effusum L. (Wood Millet) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history, and conservation.2. The grass Milium effusum is a common species of mature woodland in central and southern England, but is less common in the wetter parts of northern England, Wales, Scotland and Ireland. Worldwide, the species is native to many temperate, boreal, subarctic and subalpine parts of the northern hemisphere: from eastern North America across most of Europe (excluding Mediterranean climates) to the Ural Mountains and Black Sea, extending eastwards to the Himalaya, Korea and Japan.3. Wood Millet is a shade-tolerant, relatively tall grass (up to 1.8 m) producing up to 700 caryopses per individual. It is characteristic of temperate deciduous woodland, but can also occur in other woodland and forest types and even in scrub, alpine meadows, along railways and roads, and on rocks. In woods, it is one of the most conspicuous plants of the herb layer in the early summer after the disappearance of spring flowering species. While the species is generally considered an ancient woodland indicator in England and western Europe, it is also known to colonize secondary, post-agricultural forests relatively rapidly in other areas such as Denmark, southern Sweden and Poland.4. The species has a wide amplitude in terms of soil acidity and nutrient availability, but predominantly grows on soils of intermediate soil fertility and soil pH and with high organic matter concentration. However, M. effusum can tolerate large quantities of tree-leaf litter on the forest floor and is able to grow on very acidic soils.5. Changes in land use, climate, densities of large herbivores and atmospheric deposition of nitrogen are having effects on populations of Wood Millet. Significant responses of the life-history traits and population characteristics have been detected in response to environmental variation and to experimental treatments of temperature, nutrients, light and acidity. In many of its habitats across its range, M. effusum is currently becoming more frequent. During the last century, its mean elevation of occurrence in upland areas of Europe has also increased by several hundreds of metres. Typically, management actions are directed towards the conservation of its main habitat type (e.g. ancient woodlands of the Milio-Fagetum association) rather than to the species specifically.
  •  
4.
  • De Frenne, Pieter, et al. (författare)
  • Interregional variation in the floristic recovery of post-agricultural forests
  • 2011
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 99:2, s. 600-609
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Worldwide, the floristic composition of temperate forests bears the imprint of past land use for decades to centuries as forests regrow on agricultural land. Many species, however, display significant interregional variation in their ability to (re)colonize post-agricultural forests. This variation in colonization across regions and the underlying factors remain largely unexplored. 2. We compiled data on 90 species and 812 species x study combinations from 18 studies across Europe that determined species' distribution patterns in ancient (i.e. continuously forested since the first available land use maps) and post-agricultural forests. The recovery rate (RR) of species in each landscape was quantified as the log-response ratio of the percentage occurrence in post-agricultural over ancient forest and related to the species-specific life-history traits and local (soil characteristics and light availability) and regional factors (landscape properties as habitat availability, time available for colonization, and climate). 3. For the herb species, we demonstrate a strong (interactive) effect of species' life-history traits and forest habitat availability on the RR of post-agricultural forest. In graminoids, however, none of the investigated variables were significantly related to the RR. 4. The better colonizing species that mainly belonged to the short-lived herbs group showed the largest interregional variability. Their recovery significantly increased with the amount of forest habitat within the landscape, whereas, surprisingly, the time available for colonization, climate, soil characteristics and light availability had no effect. 5. Synthesis. By analysing 18 independent studies across Europe, we clearly showed for the first time on a continental scale that the recovery of short-lived forest herbs increased with the forest habitat availability in the landscape. Small perennial forest herbs, however, were generally unsuccessful in colonizing post-agricultural forest even in relatively densely forested landscapes. Hence, our results stress the need to avoid ancient forest clearance to preserve the typical woodland flora.
  •  
5.
  • De Frenne, Pieter, et al. (författare)
  • Latitudinal gradients as natural laboratories to infer species' responses to temperature
  • 2013
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 101:3, s. 784-795
  • Forskningsöversikt (refereegranskat)abstract
    • Macroclimatic variation along latitudinal gradients provides an excellent natural laboratory to investigate the role of temperature and the potential impacts of climate warming on terrestrial organisms. Here, we review the use of latitudinal gradients for ecological climate change research, in comparison with altitudinal gradients and experimental warming, and illustrate their use and caveats with a meta-analysis of latitudinal intraspecific variation in important life-history traits of vascular plants. We first provide an overview of latitudinal patterns in temperature and other abiotic and biotic environmental variables in terrestrial ecosystems. We then assess the latitudinal intraspecific variation present in five key life-history traits [plant height, specific leaf area (SLA), foliar nitrogen:phosphorus (N:P) stoichiometry, seed mass and root:shoot (R:S) ratio] in natural populations or common garden experiments across a total of 98 plant species. Intraspecific leaf N:P ratio and seed mass significantly decreased with latitude in natural populations. Conversely, the plant height decreased and SLA increased significantly with latitude of population origin in common garden experiments. However, less than a third of the investigated latitudinal transect studies also formally disentangled the effects of temperature from other environmental drivers which potentially hampers the translation from latitudinal effects into a temperature signal. Synthesis. Latitudinal gradients provide a methodological set-up to overcome the drawbacks of other observational and experimental warming methods. Our synthesis indicates that many life-history traits of plants vary with latitude but the translation of latitudinal clines into responses to temperature is a crucial step. Therefore, especially adaptive differentiation of populations and confounding environmental factors other than temperature need to be considered. More generally, integrated approaches of observational studies along temperature gradients, experimental methods and common garden experiments increasingly emerge as the way forward to further our understanding of species and community responses to climate warming.
  •  
6.
  • De Frenne, Pieter, et al. (författare)
  • Plant movements and climate warming : intraspecific variation in growth responses to nonlocal soils
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 202:2, s. 431-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.
  •  
7.
  • De Frenne, Pieter, et al. (författare)
  • Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient
  • 2011
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 17:10, s. 3240-3253
  • Tidskriftsartikel (refereegranskat)abstract
    • Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.
  •  
8.
  • De Frenne, Pieter, et al. (författare)
  • The response of forest plant regeneration to temperature variation along a latitudinal gradient
  • 2012
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 109:5, s. 1037-1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.
  •  
9.
  • Ehrmann, Steffen, et al. (författare)
  • Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes
  • 2017
  • Ingår i: BMC Ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Results: Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Conclusions: Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.
  •  
10.
  • Ehrmann, Steffen, et al. (författare)
  • Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments
  • 2018
  • Ingår i: Parasites & Vectors. - : Springer Science and Business Media LLC. - 1756-3305. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus.MethodsWe sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent.ResultsDuring summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.ConclusionsDiluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
tidskriftsartikel (32)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (32)
populärvet., debatt m.m. (1)
Författare/redaktör
Kolb, Annette (33)
Brunet, Jörg (27)
Verheyen, Kris (26)
De Frenne, Pieter (25)
Cousins, Sara A. O. (20)
Hermy, Martin (20)
visa fler...
Diekmann, Martin (18)
Chabrerie, Olivier (15)
Plue, Jan (12)
Heinken, Thilo (9)
Lenoir, Jonathan (9)
Deconchat, Marc (5)
De Smedt, Pallieter (5)
Lemke, Isgard (4)
Baeten, Lander (4)
Scherer-Lorenzen, Mi ... (4)
Ehrlén, Johan (4)
Hylander, Kristoffer (2)
Abrahamczyk, Stefan (2)
Jonsell, Mats (2)
Acharya, Kamal Prasa ... (2)
Sáfián, Szabolcs (2)
Nilsson, Christer (2)
Jung, Martin (2)
Berg, Åke (2)
Entling, Martin H. (2)
Goulson, Dave (2)
Herzog, Felix (2)
Knop, Eva (2)
Tscharntke, Teja (2)
Aizen, Marcelo A. (2)
Petanidou, Theodora (2)
Stout, Jane C. (2)
Woodcock, Ben A. (2)
Poveda, Katja (2)
Batáry, Péter (2)
Edenius, Lars (2)
Slade, Eleanor M. (2)
Mikusinski, Grzegorz (2)
Felton, Annika (2)
Samnegård, Ulrika (2)
Barlow, Jos (2)
Eriksson, Ove (2)
Ficetola, Gentile F. (2)
Yu, Douglas W. (2)
Schweiger, Oliver (2)
Hagenblad, Jenny (2)
Sadler, Jonathan P. (2)
Kimberley, Adam (2)
Jacquemyn, Hans (2)
visa färre...
Lärosäte
Stockholms universitet (30)
Sveriges Lantbruksuniversitet (26)
Umeå universitet (10)
Linköpings universitet (3)
Lunds universitet (3)
Södertörns högskola (3)
visa fler...
IVL Svenska Miljöinstitutet (3)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (29)
Lantbruksvetenskap (15)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy