SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolossvary M) "

Sökning: WFRF:(Kolossvary M)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gerotziafas, GT, et al. (författare)
  • Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine
  • 2020
  • Ingår i: Thrombosis and haemostasis. - : Georg Thieme Verlag KG. - 2567-689X .- 0340-6245. ; 120:12, s. 1597-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH.
  •  
2.
  •  
3.
  • Vattay, B, et al. (författare)
  • The Predictive Value of Left Atrial Strain Following Transcatheter Aortic Valve Implantation on Anatomical and Functional Reverse Remodeling in a Multi-Modality Study
  • 2022
  • Ingår i: Frontiers in cardiovascular medicine. - : Frontiers Media SA. - 2297-055X. ; 9, s. 841658-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcatheter aortic valve implantation (TAVI) can improve left ventricular (LV) mechanics and survival. Data on the predictive value of left atrial (LA) strain following TAVI are scarce. We aimed to evaluate the association of LA strain measured shortly post-TAVI with functional and anatomical reverse remodeling of the LA and LV, and its association with mortality.MethodsWe prospectively investigated 90 patients who underwent TAVI. Transthoracic echocardiography including strain analysis was performed shortly after TAVI and repeated 6 months later. CT angiography (CTA) was performed for pre-TAVI planning and 6 months post-TAVI. Speckle tracking echocardiography was used to determine LA peak reservoir strain (LASr) and LV global longitudinal strain (LV-GL), LA volume index (LAVi) was measured by TTE. LV mass index (LVMi) was calculated using CTA images. LA reverse remodeling was based on LASr and LAVi changes, whereas LV reverse remodeling was defined as an improvement in LV-GLS or a reduction of LVMi. The association of severely reduced LASr (<20%) at baseline with changes (Δ) in LASr, LAVi, LV-GLS and LVMi were analyzed using linear regression, and Cox proportional hazard model for mortality.ResultsMean LASr and LV-GLS were 17.7 ± 8.4 and −15.3 ± 3.4% at baseline and 20.2 ± 10.2 and −16.6 ± 4.0% at follow-up (p = 0.024 and p < 0.001, respectively). Severely reduced LASr at baseline was associated with more pronounced ΔLASr (β = 5.24, p = 0.025) and LVMi reduction on follow-up (β = 5.78, p = 0.036), however, the majority of the patients had <20% LASr on follow-up (44.4%). Also, ΔLASr was associated with ΔLV-GLS (adjusted β = 2.10, p < 0.001). No significant difference in survival was found between patients with baseline severely reduced LASr (<20%) and higher LASr (≥20%) (p = 0.054).ConclusionLV reverse remodeling based on LVMi was present even in patients with severely reduced LASr following TAVI, although extensive LA damage based on LA strain was demonstrated by its limited improvement over time.Clinical Trial Registration(ClinicalTrials.gov number: NCT02826200).
  •  
4.
  •  
5.
  • Suhai, FI, et al. (författare)
  • Predictors and neurological consequences of periprocedural cerebrovascular events following transcatheter aortic valve implantation with self-expanding valves
  • 2022
  • Ingår i: Frontiers in cardiovascular medicine. - : Frontiers Media SA. - 2297-055X. ; 9, s. 951943-
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the patient- and procedure-related predictors of transcatheter aortic-valve implantation (TAVI)-associated ischemic brain lesions and to assess the effect of silent cerebral ischemic lesions (SCIL) on neurocognitive function.Methods and resultsWe investigated 113 consecutive patients with severe aortic stenosis who underwent brain magnetic resonance imaging (MRI) within a week following TAVI. To assess periprocedural cerebral ischemic lesions, diffusion-weighted MRI was utilized. We used multivariate linear regression to identify the independent predictors of TAVI-related ischemic lesion volume (ILV) and periprocedural stroke. Neurocognitive evaluation was performed before and following TAVI at 6-month and one-year follow-up. Following TAVI, a total of 944 new cerebral ischemic lesions were detected in 104 patients (92%). The median ILV was 257 μl (interquartile range [IQR]:97.1–718.8μl) with a median lesion number of 6/patient [IQR:2–10]. The majority of ischemic lesions were clinically silent (95%), while 5% of the lesions induced a stroke, which was confirmed by MRI. Predilatation (β = 1.13[95%CI:0.32–1.93], p = 0.01) and the number of valve positioning attempts during implantation (β = 0.28[95%CI:0.06–0.50], p = 0.02) increased the log-transformed total ILV. Predilatation (OR = 12.04[95%CI:1.46–99.07], p = 0.02) and alternative access routes (OR = 7.84[95%CI:1.01–61.07], p = 0.02) were associated with stroke after adjustments for comorbidities and periprocedural factors. The presence of SCILs were not associated with a change in neurocognitive function that remained stable during the one-year follow-up.ConclusionWhile periprocedural ischemic lesions are frequent, most of them are clinically silent and might not impact the patients' neurocognitive function. The number of valve positioning attempts, predilatation, and alternative access routes should be taken into consideration during TAVI to reduce the ILV and risk for stroke.
  •  
6.
  •  
7.
  • Slart, Riemer H. J. A., et al. (författare)
  • Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer. - 1619-7070 .- 1619-7089. ; 48:5, s. 1399-1413
  • Tidskriftsartikel (refereegranskat)abstract
    • In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and functional imaging techniques are commonly performed to aid this endeavor, including coronary computed tomography angiography (CCTA) and nuclear cardiology imaging. Continuous improvement in positron emission tomography (PET), single-photon emission computed tomography (SPECT), and CT hardware and software has resulted in improved diagnostic performance and wide implementation of these imaging techniques in daily clinical practice. However, the human ability to interpret, quantify, and integrate these data sets is limited. The identification of novel markers and application of machine learning (ML) algorithms, including deep learning (DL) to cardiovascular imaging techniques will further improve diagnosis and prognostication for patients with cardiovascular diseases. The goal of this position paper of the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI) is to provide an overview of the general concepts behind modern machine learning-based artificial intelligence, highlights currently prefered methods, practices, and computational models, and proposes new strategies to support the clinical application of ML in the field of cardiovascular imaging using nuclear cardiology (hybrid) and CT techniques.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy