SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Komlev Andrei A.) "

Sökning: WFRF:(Komlev Andrei A.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hotta, A., et al. (författare)
  • Experimental and Analytical Investigation of Formation and Cooling Phenomena in High Temperature Debris Bed
  • 2019
  • Ingår i: Journal of Nuclear Science and Technology. - : Taylor and Francis Ltd.. - 0022-3131 .- 1881-1248.
  • Tidskriftsartikel (refereegranskat)abstract
    • Key phenomena in the cooling states of underwater debris beds were classified based on the premise that a target debris bed has a complicated geometry, nonhomogeneous porosity, and volumetric heat. These configurations may change due to the molten jet breakup, droplet agglomeration, anisotropic melt spreading, two-phase flow in a debris bed, particle self-leveling and penetration of molten metals into a particle bed. Based on these classifications, the modular code system THERMOS was designed for evaluating the cooling states of underwater debris beds. Three tests, DEFOR-A, PULiMS, and REMCOD were carried in six phases to extend the existing database for validating implemented models. Up to Phase-5, the main part of these tests has been completed and the test plan has been modified from the original one due to occurrences of unforeseeable phenomena and changes in test procedures. This paper summarizes the entire test plan and representative data trends prior to starting individual data analyses and validations of specific models that are planned to be performed in the later phases. Also, it tries to timely report research questions to be answered in future works, such as various scales of melt-coolant interactions observed in the shallow pool PULiMS tests.
  •  
2.
  • Lopukh, D. B., et al. (författare)
  • Numerical Simulation of Induction Heating for Molten Pool heat Transfer Experiments in Slice Geometry
  • 2018
  • Ingår i: 2018 INTERNATIONAL SCIENTIFIC MULTI-CONFERENCE ON INDUSTRIAL ENGINEERING AND MODERN TECHNOLOGIES (FAREASTCON). - : IEEE.
  • Konferensbidrag (refereegranskat)abstract
    • Modeling results of induction heating of experimental facility developed in the frame of European IVMR project "In-Vessel Melt Retention strategy for high power nuclear reactor" have been presented. Facility is intended for heat transfer study in the stratified pool with unmixable liquid layers. Test section consists of a slice-type vessel having a semicircular geometry representing the lower head of the reactor pressure vessel. Electrical parameters of induction heating system and design of inductor have been determined based on the modelling results to ensure the most uniform heating of the bottom layer representing heat-generating oxidic melt. A design of an electromagnetic shield has been developed to minimize electromagnetic heating of the facility vessel and influence of Lorenz forces on the natural convection of the top metal layer.
  •  
3.
  • Bandaru, S V Ravikumar, et al. (författare)
  • Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels
  • 2020
  • Ingår i: International Journal of Heat and Mass Transfer. - : Elsevier BV. - 0017-9310 .- 1879-2189. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Cooling by water spray is a well-known technology that can reach significantly higher Critical Heat Flux (CHF) compared to other cooling methods. For the light water reactor safety, the in-vessel retention (IVR) by external reactor vessel cooling (ERVC) is a comprehensive severe accident management strategy to arrest and confine the corium in the lower head of the reactor pressure vessel. Heat fluxes up to 1.5 MW/m2 have already been assumed attainable in low-power nuclear reactors while cooling required in high-power reactors is expected to reach 2.5 MW/m2. Instead of reactor lower head flooding and relying on cooling due to natural convection, a viable and more efficient alternative is to spray the external surface of the vessel. Given all the advantages of spray cooling reported in the literature, a lab-scale experimental facility was built to validate the efficiency of multi-nozzle spray cooling of a downward-facing heated surface inclined at different angles up to 90o. The facility employed a 2×3 matrix of spray nozzles to cool the FeCrAl alloy foil with an effectively heated surface area of 96 cm2 using water as the coolant. Heat loads and surface inclinations were varied parameters in the test matrix. The results show that no significant variations in spray cooling performance concerning the inclination of the heated surface. A surface heat flux of 2.5 MW/m2 was achieved at every inclination of the downward-facing surface. The results also indicate that more uniform liquid film distribution could be obtained for some inclinations, which in turn leads to maintaining low surface temperature. The obtained surface heat flux margin by spray cooling indicates that it is feasible to adopt IVR-ERVC strategy for a large power reactor.
  •  
4.
  • Deng, Yucheng, et al. (författare)
  • An experimental study on the effect of coolant salinity on steam explosion
  • 2024
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 201
  • Tidskriftsartikel (refereegranskat)abstract
    • The steam explosion plays an essential role in the safety analysis of light water reactors (LWRs). Some studies have demonstrated that the occurrence of steam explosions is dependent on many factors such as melt and coolant temperatures, melt and coolant properties, non -condensable gases, etc. After the Fukushima accident, seawater as an emergency coolant and its impact on fuel coolant interactions are receiving attention. However, there is still little knowledge on the impact of seawater on steam explosion. The present study is intended to examine the effect of coolant salinity on steam explosion through a series of tests with single molten droplet falling in different coolant pools (DI water, and seawater at different salinities from 7.7 g/kg to 35 g/kg). The experimental results reveal that the salinity of coolant significantly influences the probability of spontaneous steam explosion of molten tin droplets. The probability of steam explosion generally increases with increasing salinity from 0 to 17.5 g/kg. The molten droplet in seawater experiences more pronounced deformation at same depth before the vapor film of the droplet collapses. What's more, the peak pressure generated by steam explosion in seawater is notably higher than that in DI water. The fragmentation of molten tin droplet after the explosion is enhanced accordingly.
  •  
5.
  • Guo, Qiang, et al. (författare)
  • Oxidation of molten zirconium-containing droplet in water
  • 2024
  • Ingår i: Progress in nuclear energy (New series). - : Elsevier BV. - 0149-1970 .- 1878-4224. ; 175
  • Tidskriftsartikel (refereegranskat)abstract
    • During a severe accident in light water reactors, the molten reactor core (corium) falls into a water pool in the form of a jet. Complex interactions may occur between the melt and coolant known as molten fuel-coolant interactions (FCI), including energetic coolant evaporation and metallic melt (e.g., Zr and Fe) oxidation. This may further lead to steam and hydrogen explosions, which are both substantial safety risks for nuclear power plants. The heat of reaction and hydrogen production during oxidation can influence the progress and severity of the accidents. For example, the reaction heat may prolong the liquid state of corium, potentially leading to highintensity explosions, whereas the generated hydrogen can create a combustible atmosphere, increasing the risk of hydrogen explosion. Therefore, this study evaluates the hydrogen production and oxidation degree of molten metallic droplets falling into a water pool to improve the FCI models for the risk evaluation of severe accident safety. The MISTEE-OX facility at KTH, which has been primarily built to study steam explosions is modified to investigate oxidation during FCI and provide experimental data on the oxidation behaviour of metallic droplets (Zr/Fe) quenched in a subcooled water pool. The dynamics of the falling droplets and generated bubbles are recorded using a high-speed camera, and the total volume of the bubbles is measured using a graduated cylinder. This study presents preliminary experimental results of the oxidation between Zr/Fe droplets and water, as well as recent improvements in measurement methods and facility upgrades. Our research findings are useful to enhance the knowledge of the oxidation process in FCI phenomena and validate the related mechanistic models in FCI codes.
  •  
6.
  • Hoseyni, Seyed Mohsen, et al. (författare)
  • Metallic melt infiltration in preheated debris bed and the effect of solidification
  • 2021
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 379, s. 111229-
  • Tidskriftsartikel (refereegranskat)abstract
    • The re-melting of multi-component debris is important for both in-vessel and ex-vessel phases of severe accident progression in nuclear power plants. However, current knowledge is limited with respect to understanding the associated complex phenomena and their interactions. In this paper, the phenomenon of melt infiltration through a porous debris bed with and without solidification is examined by synthesizing the data obtained from ongoing experimental research (REMCOD facility). In this regard, results obtained from 12 experiments are analyzed. Eight tests were conducted for melt infiltration through debris at temperatures above solidification. At this condition, two flow regimes are identified for the melt flow inside the hot porous debris, which is initially dominated by capillary forces and hydrostatic head and then later by the gravity forces. In addition, 4 tests were performed for melt penetration into cold debris where melt infiltration is limited by solidification. It was found that the depth of penetration is correlated with the difference between "sensible heat of melt" and "the amount of heat required to heat the bed up to the melting point of specific melt composition."
  •  
7.
  • Komlev, Andrei A., et al. (författare)
  • Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O System
  • 2016
  • Ingår i: Russian journal of applied chemistry. - : Maik Nauka-Interperiodica Publishing. - 1070-4272 .- 1608-3296. ; 89:12, s. 1932-1938
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific features of the process in which oxide nanopowders are formed in a hydrothermal treatment of coprecipitated magnesium and iron oxides were studied. It was shown that the rate at which oxide nanoparticles are formed increases when reagents structurally close to the final product are used. It was found that, with the hydrothermal treatment of coprecipitated magnesium and iron hydroxides at 450°C combined with the subsequent thermal treatment in air at temperatures of 400–600°C, it is possible to obtain a homogeneous mixture of nanocrystalline powders based on an iron-containing spinel phase and magnesium oxide.
  •  
8.
  • Komlev, Andrei A., et al. (författare)
  • New sacrificial material for ex-vessel core catcher
  • 2015
  • Ingår i: Journal of Nuclear Materials. - : Elsevier. - 0022-3115 .- 1873-4820. ; 467, s. 778-784
  • Tidskriftsartikel (refereegranskat)abstract
    • A new functional (sacrificial) material has been developed in the Fe2O3-SrO-Al2O3-CaO system based on strontium hexaferrite ceramic in concrete matrix. The method of producing SM has been advanced technologically; this technological effectiveness allows the SM to be used in ex-vessel core catchers with corium spreading as well as in crucible-type core catchers. Critical properties regarding the efficiency of SM in ex-vessel core catchers, such as porosity, pycnometric density, apparent density, solidus and liquidus temperatures, and water content have been measured. Suitable fractions of SrFe12O19 and high alumina cement (HAC) were found in the SM based on thermodynamic analysis of the SM/corium interaction. The use of sacrificial steel as an additional heat adsorption component in the core catcher allowed us to increase the mass fraction range of SrFe12O19 in the SM from 0.3-0.5 to 0.3-0.85. The activation temperature of the SM/corium interaction has been shown to correspond to the liquidus temperature of the local composition at the SM/corium interface. The calculated value of this temperature was 1716 degrees C. Analysis of phase transformations in the SrO-Fe2O3 system revealed advantages of the SrFe12O19-based sacrificial material compared with the Fe2O3-contained material owing to the time proximity of SrFe12O19 decomposition and corium interaction activation.
  •  
9.
  • Manickam, Louis, et al. (författare)
  • Oxidation of molten zirconium droplets in water
  • 2019
  • Ingår i: Nuclear Engineering and Design. - : ELSEVIER SCIENCE SA. - 0029-5493 .- 1872-759X. ; 354
  • Tidskriftsartikel (refereegranskat)abstract
    • Zirconium, which is used as the cladding material of nuclear fuel rods in LWRs, can react with steam in the case of a core meltdown accident. This results in the release of hydrogen which poses a significant risk of hydrogen explosion. Oxidation of Zr occurs either during the core degradation when the steam flows over the hot fuel rod surfaces or during an FCI when molten corium falls into a water pool (e.g. in the lower head). An experimental study was performed at the MISTEE-OX facility at KTH to observe and quantify the oxidation of molten zirconium droplets in a water pool. During the experimental runs, single droplets of molten zirconium were discharged into a subcooled water pool and the dynamic events were recorded using a high-speed camera. The bubble dynamics indicate a process of cyclic oxidation and hydrogen release from the rear periphery of a droplet while it is quenched in the water. The debris (solidified state of the droplet) after each run was collected for compositional and microstructural analysis via SEM/EDS. The obtained data were employed to estimate the oxidation fractions of the droplets and the results revealed several interesting insights into the oxidation phenomenon of the Zr melt. The water subcooling was observed to have a significant influence on the oxidation: the degree of oxidation decreased with increase in the water subcooling. Furthermore, the degree of oxidation was also influenced by the depth into the debris, forming compounds whose oxygen content decreases from the outer surface towards the core of the debris. Therefore, the qualitative and quantitative results presented in this paper are important in the context of developing a phenomenological understanding of the oxidation behaviour of zirconium melt during the FCI as well as to improve and validate the currently available models implemented in the state-of-art steam explosion codes.
  •  
10.
  • Xiang, Yan, et al. (författare)
  • An experimental investigation on debris bed formation from fuel coolant interactions of metallic and oxidic melts
  • 2023
  • Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311 .- 1873-5606. ; 233
  • Tidskriftsartikel (refereegranskat)abstract
    • During postulated severe accidents in a light water reactor (LWR), the core melt (corium) may relocate to the lower head and fail the reactor pressure vessel (RPV). The corium is expected to undergo fuel coolant interactions (FCI) if the reactor cavity is flooded with water. Both FCI energetics and resulting debris bed coolability are of paramount importance to reactor safety, since the ex-vessel corium poses a threat to the containment integrity if steam explosion occurs or the debris bed is uncoolable, leading to release of radioactive fission products to the environment. The present study is intended to quantify the characteristics of a debris bed resulting from FCI, which are crucial to debris bed coolability. Different from the previous studies with only oxidic materials, various materials, including metallic ones of Sn, Sn-Bi and Zn as well as oxidic one of Bi2O3-WO3, were employed as the simulants of corium (mixture of UO2/ZrO2/Zr/Fe) in the present study to investigate the effects of melt materials, melt superheat and coolant subcooling on debris bed formation in a water pool. High-speed photography was applied to visualize melt jet breakup, droplets fragmentation, as well as fragments sedimentation on the pool floor. Other obtained data are debris bed shape (profile) and porosity, as well as morphology and size distri-bution of debris particles. The comparative results of various tests provided insights toward filling the knowledge gap on debris bed characteristics under different melt materials and compositions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy